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Kurzfassung

Seit der Etablierung von Bitcoin sind Kryptowährungen als alternative digitale Zahlungs-
methode und hochspekulative Investition sehr gefragt. Mit dem Anstieg der Rechenleis-
tung und dem Wachstum der verfügbaren Daten, hatten tiefe neuronale Netze in den
letzten Jahren auch eine steigende Popularität zu verzeichnen. Mit der Einführung der
Long Short-Term Memory (LSTM) Architektur wurden neuronale Netze e�zienter darin,
langfristige Abhängigkeiten in Daten wie Zeitreihen zu erkennen.

In dieser Arbeit kombinieren wir diese beiden Themen, indem wir neuronale Netze ver-
wenden, um eine Prognose der Kryptowährungspreise zu generieren. Insbesondere testen
wir, ob LSTM-basierte neuronale Netze profitable Handelssignale für die Kryptowährung
Ethereum vorhersagen können. Wir experimentieren mit verschiedenen Vorverarbeitungs-
techniken und unterschiedlichen Targets, sowohl für die Regression des Preises als auch
für die Klassifikation von Handelssignalen. Wir evaluieren zwei LSTM-basierte Netzwerke
und einen Convolutional Neural Network (CNN) LSTM Hybrid. Die für das Lernen
verwendeten Daten sind historische Ethereum Preisdaten im Minutentakt von August
2017 bis Dezember 2018. Wir messen die Leistung der Modelle durch Backtesting, wobei
wir den Handel auf Basis der Vorhersagen der Modelle mit historischen Daten simu-
lieren, die nicht für das Lernen verwendet wurden. Wir analysieren diese Performance
und vergleichen sie mit der Buy-and-Hold Strategie. Diese Simulation wird über einen
Bullenmarkt, einen Bärenmarkt und einen stagnierenden Zeitraum durchgeführt.

In der Auswertung finden wir das leistungsstärkste Target und identifizieren zwei Vorver-
arbeitungskombinationen, die für diese Aufgabe am besten geeignet sind. Wir kommen zu
dem Schluss, dass der CNN LSTM Hybrid in der Lage ist, Handelssignale für Ethereum
profitabel zu prognostizieren und die Buy-and-Hold-Strategie um etwa 30% übertri�t,
während die Performance der beiden anderen Modelle eher entäuschend war.
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Abstract

Since the introduction of Bitcoin, cryptocurrencies have become very attractive as an
alternative digital payment method and a highly speculative investment. With the rise in
computational power and the growth of available data, the artificial intelligence concept
of deep neural networks had a surge of popularity over the last years as well. With
the introduction of the long short-term memory (LSTM) architecture, neural networks
became more e�cient in understanding long-term dependencies in data such as time
series.

In this thesis, we combine these two topics, by using neural networks to make a prognosis
of cryptocurrency prices. In particular, we test if LSTM based neural networks can
produce profitable trading signals for the cryptocurrency Ethereum. We experiment with
di�erent preprocessing techniques and di�erent targets, both for price regression and
trading signal classification. We evaluate two LSTM based networks and one convolutional
neural network (CNN) LSTM hybrid. As data for training we use historical Ethereum
price data in one-minute intervals from August 2017 to December 2018. We measure the
performance of the models via backtesting, where we simulate trading on historic data
not used for training based on the model’s predictions. We analyze that performance
and compare it with the buy and hold strategy. The simulation is carried out on bullish,
bearish and stagnating time periods.

In the evaluation, we find the best performing target and pinpoint two preprocessing
combinations that are most suitable for this task. We conclude that the CNN LSTM
hybrid is capable of profitably forecasting trading signals for Ethereum, outperforming
the buy and hold strategy by roughly 30%, while the performance of the other two models
was disappointing.
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CHAPTER 1
Introduction

This chapter gives an overview over the thesis. It starts with a motivation on why this
topic was chosen. The aim of this work is discussed along with the questions this thesis
strives to answer. The methodological approach is laid out and the subsequent structure
of the thesis is presented.

1.1 Motivation
Deep neural networks are a subset of artificial intelligence and their concept is also
commonly referred to as deep learning. The core idea behind neural networks was
inspired by the brain and has been around for decades. Due to improved learning
methods, increasing computational power and large datasets, deep learning has risen
in popularity over the last years and is a field of high interest in today’s computer
science (Figure 1.1) [1]. Neural networks have had success in solving very complex tasks,
long thought to be out of reach for computers, e.g. speech recognition [2], image/video
classification [3][4], automated translation [5], text generation [6], self-driving cars [7]
and many more.

A very notable accomplishment for neural networks was when the technology company
Google introduced a system called Duplex at their developer conference Google I/O in
2018. Duplex can allegedly make phone calls to book appointments or reservations
with no human input necessary, having a natural sounding voice as well as using and
understanding nuances of the English language. In the future, many more applications
are conceivable and deep learning might replace call centers for providing automated
support, assist in elderly care, aid during surgeries and so on.

Another IT topic which has been receiving an increasing amount of attention since 2008
is everything related to the blockchain technology [1]. While a blockchain is merely a
cryptographically hashed, linked list, it creates possibilities for various applications. One
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1. Introduction

Figure 1.1: Number of scientific publications containing “deep learning”, according to
Web of Science [1].

of the many concepts arising from it are decentralized applications and smart contracts
[8], agreements that are cryptographically enforced and therefore eliminating the need
for notaries, first proposed by Szabo [9].

However one of the first and arguably the most popular use of blockchains was for
cryptocurrencies, namely in Bitcoin as a public and tamper-proof ledger containing all
transactions [10]. Cryptocurrencies have attracted many investors and have increased their
market capitalization to over 100 billion US dollars. Aside from being a cryptographically
tamper-proof form of digital payment, cryptocurrencies have several other advantages
over conventional fiat currencies, such as not relying on a trusted third party for carrying
out transactions or being able to transfer money using pseudonyms.

Bitcoin and other cryptocurrencies are traded on exchanges for one another or for fiat
currencies like US dollars. The price fluctuation for cryptocurrencies is generally rather
high. It is not clear, where this volatility stems from, which factors influence the price
in what way and if it is possible to predict these fluctuations. Analyzing the price of
cryptocurrencies using deep neural networks is an interesting way to combine aspects of
both these topics, to investigate the performance of neural networks in that domain and
to find out if the prices of cryptocurrencies can be predicted and to what extent.

1.2 Aim of the work

This work revolves around the following question: Are simple neural networks able to
predict the price of cryptocurrencies? Cryptocurrency prices along with prices of stocks
seem to behave rather randomly. Predicting the price of such an asset seems very hard at
best, with some claiming that is not possible at all. If it is possible, then what features

2



1.3. Methodological approach

influence the price in what way? The prospect of profit is enough for banks, finance
companies, ordinary people and also researchers to look into automated trading and
develop or test various methods and techniques for predicting such prices or generating
trading signals in order to get a profitable trading strategy as a result. There are in
fact numerous approaches for doing that [11] ranging from performing purely statistical
analysis or applying mathematical concepts [12] over implementing simple algorithms
to trade based on key financial figures [13] up to creating self-learning machine learning
models like neural networks [14].

The vast majority of these attempts has focused on stock price forecasting. Analyzing
the prices of cryptocurrencies is however quite interesting as well. Cryptocurrencies are
very volatile and their trading volume is high with more than 15% of the overall market
capitalization on January 30, 2019 [15]. Furthermore, the free availability of application
programming interfaces (API s) and the relatively low trading fees make cryptocurrencies
advantageous for automated trading for practical reasons. Historic price data is freely
available in very fine granularity, providing a good data set to train on in later steps.

The goal of this thesis was to implement several neural networks, train them on previously
fetched and then preprocessed historical price data as well as measuring their performance
by simulating trades based on the predictions made by the neural networks. Leaving
aside the inherent benefit of potential profit, we focus on several questions in this work
and hope to gain a better insight on the price development, its influences and the neural
networks:

• Is it possible to forecast the price of cryptocurrencies or generate profitable trading
signals based on historic price data and if yes, to what extent?

• Are trading strategies based on these predictions or trading signals able to generate
profit, perform better as the price development or both? How does this performance
vary in di�erent market situations?

• Are the prices of cryptocurrencies influencing one another? I.e. does the Bitcoin
price influence the price of Ethereum?

• Which neural networks perform better and which worse?

To answer these questions we developed the following approach, which we present in the
next section.

1.3 Methodological approach
The main task of this thesis is the implementation of the tool for constructing, training and
testing neural networks as well as gathering and preprocessing the data and the conducting
of experiments to evaluate these neural networks in their performance. For the realization

3



1. Introduction

the following steps were taken. At first some background and literature research was done,
in order to gain deeper insights about relevant and later used techniques and methods.
Fields of interest included time series analysis, the stock market, automated trading,
cryptocurrencies, machine learning, artificial neural networks (especially recurrent and
convolutional neural networks and long short-term memory units) and their evaluation.

Subsequently, a concept for a software tool to carry out the goal of this thesis was
drafted. That tool was to include means to aggregate historic cryptocurrency price data,
preprocess it, create neural networks and train them on the data as well as evaluate
the neural networks. In this step we settled on the type of data which was going to
be used for training. The input features and four di�erent targets were defined. The
specific preprocessing techniques were chosen. The architecture of three di�erent neural
networks was picked. Finally a way to measure all di�erent combinations of preprocessing
techniques, targets and neural networks was selected, i.e. to simulate trading on the
price data over a period of time.

Afterwards a suitable technology stack was selected, catering to the specific requirements
of this task. The tool was constructed by implementing the di�erent parts of the program
in a modular fashion, so that the di�erent targets, preprocessing techniques and neural
network models can be combined at ease. The final tool works as follows. At first the
data is gathered via the API of the cryptocurrency exchange Binance. For this dataset
features are extracted and a target is constructed. The data is then preprocessed before it
is fed into one of the priorly constructed neural networks. The neural network is trained
on training data, a subset of all the available data, and then tested. This testing is done
by simulating trading on the testing data, another subset disjoint to the first one. The
trading is simulated by acting according to the prediction or generated trading signal of
the neural network.

Furthermore, a plan for how to conduct the experiments was created. Ethereum was
selected as a cryptocurrency for the evaluation. To have more conclusive results, three
di�erent price sectors were chosen on which to carry out the tests. We chose one sector
for a period of time where the price was rising, another one for where the price was
dropping and the last one for where it was staying more or less the same. Because of the
vast search space along with the high computational e�ort, the search space was reduced
in a way to focus on the most promising and fastest learning combinations. The tests
were finally carried out and analyzed, focusing on the preprocessing techniques, targets
and the three di�erent neural network models. For the two best performing combinations,
more extensive tests were carried out, i.e. they were trained across more epochs. The
results were then compared to methods used in other studies.

In the end the work was summarized and some reflection was done on what conclusions
can be drawn from it. Then final thoughts were given on how to continue and improve
on this work and its results in possible future work.
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1.4 Structure of the work
The structure of the thesis mirrors these steps and the order in which they were carried
out.

• Chapter 2 (Background) gives a literature overview over the stock market,
(automated) stock price prediction, cryptocurrencies, neural networks and their
evaluation in order to provide background information on the concepts used through-
out the rest of the thesis. Some related work is presented.

• Chapter 3 (Constructing neural networks for predicting cryptocurrency
prices) goes over the concept of the software tool created in this thesis, consid-
erations of di�erent input data and features, output and preprocessing as well as
various neural networks and performance measurement.

• Chapter 4 (Implementation) presents what technology was used and why it
was selected, how the tool was implemented in code and goes over considerations
about hardware and computation time.

• Chapter 5 (Evaluation) gives an overview over how the experiments and the
evaluation were conducted, goes over the results in detail and compares the results
to other methods.

The thesis is summarized in the end, where we also suggest some improvements to our
approach and encourage further research.
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CHAPTER 2
Background

In this chapter we present background information about the methods used throughout
this thesis. Section 2.1 focuses on time series analysis as well as on influences and
methods for modeling and forecasting stock prices. In Section 2.2 the fundamentals of
the cryptocurrency Bitcoin are laid out, what di�erentiates it from conventional money,
present alternative cryptocurrencies and the di�erences in trading cryptocurrencies and
stocks. Section 2.3 lists numerous machine learning techniques, goes into how artificial
neural networks function and learn, especially recurrent neural networks, long short-term
memory units and convolutional neural networks. In Section 2.4 we go over how the
performance of neural networks can be evaluated. Section 2.5 presents related work.

2.1 Stock analysis

The stock of a business is the sum of all shares of a joint-stock company. Every shareholder
is a partial owner of the company in proportion to the amount of shares owned. Shares can
be bought and sold on the stock market, which in turn determines the price of the company
stock. Stocks are a popular form of investment for reasons such as profit, diversification
of one’s wealth, securing against inflation and so on. Private and professional investors
are trading with stocks and a lot of research and money is spent on analyzing the price
development in order to have an advantage over other investors and a more profitable
stock portfolio. The following sections give an overview over di�erent approaches for
analyzing stock prices.
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2. Background

2.1.1 Time series analysis
Time series can be defined as follows.

“A time series is a set of observations xt, each one being recorded at a specific time t. A
discrete-time time series (...) is one in which the set T0 of times at which observations
are made is a discrete set, as is the case, for example, when observations are made at
fixed time intervals. Continuous-time time series are obtained when observations are
recorded continuously over some time interval, e.g., when T0 = [0, 1].”

— Peter J. Brockwell et al., Introduction to time series and forecasting (pp. 1-2) [16]

Due to the nature of the thesis we will only consider discrete time series. Many signals can
be classified as time series. Some examples are data over time about the weather, tourists,
users of public transport, shipment numbers and many more. Especially interesting are
prices of any kind, e.g. housing prices, air fares, prices for specific products.

Analyzing such time series is carried out to gain insights into the data itself or to
generate predictions based on the observations. Finding such a connection within the
data or finding a model that can make predictions with a higher than average accuracy
is beneficial and has many practical applications in the example areas mentioned above.

There are numerous approaches to time series analysis. Some of them are purely mathe-
matical, e.g. regression, moving averages, maximum likelihood estimation, autoregressive
moving average model and many more [16][17]. Another approach would be to use
machine learning techniques, like for instance neural networks [18][19].

Stock and commodity prices over time are perfect examples of time series. Stock trades
do not happen at fixed intervals, but can be carried out at any time. However, stock price
charts are still usually presented in the following way. The price and sometimes other
values like volume or number of trades are presented at fixed intervals. For instance,
this can be yearly, daily or in second intervals. Out of all the trades that are carried
out within this year, day or second, the value for this interval is quantified as price at
the beginning of the interval (open), highest price of the interval (high), lowest price
of the interval (low) and price at the end of the interval (close). These data are often
graphically represented in the form of candlestick diagrams.

2.1.2 Unpredictability of the market
There has been extensive research attention on the analysis of stock price development.
While analyzing time series can have various di�erent applications, analyzing stock prices
has the inherent benefit of potential profit. Additional interest is sparked by the curiosity
for understanding stock price movements, mitigating the risks of major market crashes
and so on. It is disputed whether or not predicting stock prices or their movements is
possible or not. The models presented in this section conclude that such a price prediction
is not possible over longer time spans.

8



2.1. Stock analysis

In 1900 Bachelier famously modeled price movements of Parisian stocks after the physical
phenomenon known as Brownian motion, which is used to describe random movements
of particles in liquids and gases, to model small price movements of stocks traded in
Paris [20]. A stochastic model for Brownian motions was proposed in 1923 by Wiener
and is known as Wiener process [21]. We use the definition from Dunbar [22], which is
included here for the reader’s convenience.

Definition 2.1.1. The standard Wiener process is a stochastic process W (t), for t Ø 0,
with the following properties:

1. Every increment W (t) ≠ W (s) over an interval of length t ≠ s is normally
distributed with mean 0 and variance t ≠ s, that is W (t) ≠ W (s) ≥ N(0, t ≠ s).

2. For every pair of disjoint time intervals [t1, t2] and [t3, t4], with t1 < t2 Æ t3 < t4,
the increments W (t4) ≠ W (t3) and W (t2) ≠ W (t1) are independent random
variables with distributions given as in part 1, and similarly for n disjoint time
intervals where n is an arbitrary positive integer.

3. W (0) = 0.

4. W (t) is continuous for all t.

— Steven R. Dunbar, Stochastic Processes and Advanced Mathematical Finance: The
Definition of Brownian Motion and the Wiener Process (p. 4) [22]

The independent increments described in property 2 mean that additional knowledge
of previous values has no impact on the probability of future values. In fact, the above
definition directly implies the Markov property, making Wiener processes a subcategory
of Markov processes [22]. First-order Markov processes are memoryless, which means
that the next state depends only on the current state and not a history of states before
that [23]. If Wiener processes are a valid model for stock prices, it is implied that historic
data, for example price data, cannot have any influence on the future price.

The e�cient-market hypothesis (EMH), often attributed to Eugene Fama, proposes that
all the available data or information of a stock is already fully reflected in a stock’s price
[24] [25]. This is based on the assumption that the information is freely available and that
traders act largely rationally. According to this theory, stocks are never sold too cheap
and bought too expensive. A trader cannot expect to outperform (or underperform) the
average market performance, no matter what analysis or prediction method is used.

A theory consistent with the EMH is the random walk hypothesis [26]. It states that
stock prices follow the mathematical model known as random walk, implying in essence
that price changes are completely random. Like the EMH, the random walk hypothesis

9



2. Background

concludes that any analysis based on historic data is futile. The following famous quote
is found in the 1973 book “A random walk down Wall Street” written by Burton G.
Malkiel.

“A blindfolded monkey throwing darts at a newspaper’s financial pages could select a
portfolio that would do just as well as one carefully selected by experts.”

— Burton G. Malkiel, A random walk down Wall Street (p. 24) [27]

These models are contested and there are claims that it is possible to predict stock prices,
at least to some degree. We will present counter-arguments and possible influences on
stock prices in the next section.

2.1.3 Influences on the market

Professional investors as well as banks that invest a lot of money in managers for managed
funds, market analysis and so on make it apparent that there are at least numerous
people that believe in being able to outperform the market. The following are empirical
findings as well as other considerations that are in contrast to the theories in Section
2.1.2.

Analyzing the stock market over the years has resulted in finding several anomalies. An
example for such an anomaly is the January e�ect, an e�ect where stock prices perform
better in January compared to other months [28], shown in Figure 2.1. This e�ect is
sometimes attributed to selling one’s assets at the end of the year and rebuying them
at the beginning of the new year for tax purposes. Aside from occurring at a certain
point in time, anomalies can also appear based on the historic price (e.g. momentum
e�ect) or the company fundamental data (e.g. earnings-price anomaly). The momentum
e�ect is the observation that increasing (decreasing) stock prices tend to continue to
increase (decrease) [29]. The earnings-price anomaly is the observation that the stocks of
comapnies with a smaller price/earnings ratio tend to perform better than others [30].
Finally, large speculative bubbles followed by market crashes stem from over-/undervalued
stock prices.

The existance of professional investors like Warren Bu�et who consistently outperform
the market over long periods of time is obviously not disputed. According to theories
like the EMH, these successes should not be possible over the long term. Furthermore,
banks that invested more in any form of market analysis or alogrithmic trading should
be at a major disadvantage. Algotrithmic trading utilizes pre-defined rules based largely
on historic price and volume [32] and should therefore not be able to outperform the
market according to the EMH. Yet the e�ort in algorithmic trading is so high, that in
2012 algorithmic trading accounted for 85% of the volume according to Glantz et al. [33].
Another claim is, that people acting based on common stock analysis strategies generate
a situation where a prediction becomes a self-fulfilling prophecy [34].

10



2.1. Stock analysis

Figure 2.1: Average stock returns by month of the year, from 1927 - 2001; Haugen and
Lakonishok, The Incredible January E�ect [31]. January had significantly larger returns
than the other months in that period of time.

These findings and considerations indicate the opposite of the EMH, namely that there
is a way to outperform the market, at least to a certain degree. And while it remains
unclear which school of thought is right and which is wrong, we will now go over the
di�erent kinds of data which could potentially have an influence on the prices of stocks.

There are several di�erent techniques for predicting future stock price movements which
are categorized by what kind of data they are based on. A method that uses the price
and trading volume of a stock falls under the category of technical analysis [35]. The ones
that focus on data like company assets, earnings, etc., are called fundamental analysis
[36]. Still others center their attention on the sentiment of people about a company,
expressed in newspapers articles or other media in what is called sentiment analysis [37].
While the latter one has been around only more recently, due to successes in machine
learning and the availability of media through APIs, technical and fundamental analysis
have both been around for a longer period of time. Fundamental analysis has had more
support than technical analysis, for example by star investor Warren Bu�et who uses it
as part of his investment strategy [38], while technical analysis has often been regarded
as hoax, as is illustrated in the following quote [39].

11



2. Background

“It has been argued that the di�erence between fundamental analysis and technical
analysis is not unlike the di�erence between astronomy and astrology. Among some
circles, technical analysis is known as ‘voodoo finance’.”

— Lo, Mamaysky and Wang, Foundations of technical analysis: Computational
algorithms, statistical inference, and empirical implementation (p. 1705) [39]

Regardless of whether technical analysis is a legitimate approach for predicting stock price
movements, numerous research has been done on the subject. We will give an overview
over some of the methods and performance findings presented in other researches in the
next section.

2.1.4 Technical analysis

As briefly mentioned above, technical analysis is a category of techniques for forecasting
price movements based on historic market data such as price and volume. Technical
analysis assumes that information relevant to making trading decisions can be found
in the past price development of a company’s stock. These decision can be observed
as patterns in the price chart or as calculated indicators and based on how the market
reacted in the past, an estimation on how the price will develop in the future can be
made. There are countless di�erent approaches for technical analysis. An overview can
be found in the in the book Technical analysis: The Complete Resource for Financial
Market Technicians by Kirkpatrick II and Dahlquist [35]. The prices of stocks change
within fractions of seconds, which makes this type of analysis very important for making
high frequency trading (HFT) decisions.

The price of a company’s stock can be represented graphically in a diagram or chart,
e.g. in a candlestick chart. These charts can be analyzed for (reoccurring) patterns such
as gaps, spikes or waves. These patterns can be made visible by drawing trend lines or
channels around the price movement. Technical or chart analysts will make predictions
of future price movements if they find specific patterns in the price chart. One example
for a very popular pattern is the Elliott wave principle, developed by Elliott in 1938
[40]. Within a trend the price develops in five impulsive waves going in one direction,
followed by three corrective waves going in the opposite direction, both times in a zigzag
pattern. This theory is based on the assumption that investors are alternating between
optimism and pessimism and tend to overreact, creating the need for a correction [41].
This principle is illustrated in Figure 2.2. Other patterns include head and shoulders,
cup and handle or broadening top [35].

Another approach is the use of technical indicators. These mathematically calculated
indexes indicate future price movements, trends or the volatility of a stock. Indicators can
be leading or lagging. Leading indicators precede the price and help to predict it, whereas
lagging indicators are used to confirm stock price movements. Furthermore indicators
can be bounded to a certain range (also called oscillator) or unbounded. An advantage
over analyzing the chart for patterns is that technical indicators are quantifiable. For
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Figure 2.2: Depiction of the Elliott wave principle as an example of a pattern used in
technical analysis; Frost and Prechter, Elliott Wave Principle [41]. A technical analyst
might inspect a stock price to find out if it exhibits this pattern or a part of it, to predict
the future price (direction).

most technical indicators, there is a formula that calculates the indicator at a specific
point in time. The following are a few examples of the countless di�erent indicators and
what they can be used for. Note that this is just a very small selection and that we opted
to omit a comprehensive explanation as well as a formula for computing the indicator,
which can be found in the literature [35][42].

• Moving average: This is a simple mathematical method used to smooth stock
price movements (and time series in general).

• Average directional movement index (ADX): This lagging indicator is used
to determine the strength of a trend.

• Relative strength index (RSI): This leading indicator ranges from 0 to 100
used to identify oversold or overbought markets.

• Moving average convergence/divergence (MACD): This lagging indicator
is used to determine the momentum, duration and strength of a stock’s trend.
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Note that some patterns or indicators contradict each other, i.e. they predict di�erent
outcomes. An analyst can make predictions based on one pattern or indicator or can
combine several into a trading strategy. These strategies are usually backtested before
being used, which means simulating trading on historic data based on the strategy. In
the past this was performed manually and rather tedious, nowadays computers carry out
backtesting over large periods of time and several di�erent stocks. With backtesting, the
e�ectiveness of strategies can be tested to some degree without risking any money.

Whether or not technical analysis works or is profitable has been subject of debate in
many research papers. The following three survey papers each investigate several research
results about the performance and profitability of technical analysis. In their 2007 article
Park and Irwin investigate 95 studies about technical analysis, 56 exhibiting profitable
results when applying technical analysis, 20 unprofitable results and 19 mixed results
[43].

In 2017 Nazário et al. examined 85 papers. The papers were classified as 79 in favor of
technical trading, 6 not in favor of technical analysis and 4 not applicable (a few papers
fall into more than one category), while also classifying by developed and emerging
markets, risks, transaction costs, etc. [44].

In 2009 Schulmeister analyzed 2680 di�erent technical trading models and found that the
profitability of technical trading has declined from 1960 to 2007. Over the whole period
only 2.6% of the models had negative returns [45]. Schulmeister goes over the shift from
trading daily over 30-minute intervals to even higher frequencies in recent years and tries
to explain that phenomenon with the Adaptive Market Hypothesis [46] as follows:

“According to the Adaptive Market Hypothesis (AMH) of Lo (2004), markets become
gradually more e�cient in an evolutionary process. By learning to exploit profit
opportunities, market participants will slowly erode these opportunities through an
arbitrage mechanism. Once the ‘old’ and simpler rules have become unprofitable, new
and more sophisticated trading strategies will emerge which will gradually also improve
market e�ciency.”
— Stephan Schulmeister, Profitability of technical stock trading: Has it moved from daily

to intraday data? (p. 199) [45]

The research on this subject is ongoing. And while it might be arguable if new trading
strategies presented in studies are more sophisticated, they are certainly using many
di�erent and new approaches. We will present some in the next section.

2.1.5 Stock price prediction
We have already covered some of the di�erent types of data that can be used for predictive
models: Technical, fundamental and sentiment data. However the models themselves
are very di�erent. The methods include machine learning techniques such as neural
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networks, (multi-)linear regression, autoregressive (integrated) moving average model
(ARMA/ARIMA) models, genetic algorithms and so on. An overview was given by
Atsalakis and Valavanis in 2009 [11].

The following papers are meant to give some examples for the di�erent techniques.
Gorgulho et al. used genetic algorithms (a process of improving solutions inspired
by natural selection) on technical indicators to manage a portfolio [47]. Wang used
a principal component analysis and support vector machine combination (a machine
learning approach) to predict stock trends [48]. Wijaya et al. compared ARIMA and
artificial neural networks as forecasting methods [49]. Lauren et al. combined simple
moving averages with news sentiment in a neural network approach to predict stock
trends [50]. Nadkarni et al. combined NeuroEvolution (a method used to evolve the
structure of neural networks) with principal component analysis [51]. The e�ectiveness of
di�erent neural networks was also investigated by Nayak et al. [52], Ticknor [53], Rather
et al. [54], Khan et al. [55], as well as many others.

Trading the stock market has some disadvantages. Relatively high fees and the cost
for real-time data in small intervals make it less suitable for high frequency trading,
especially if one does not have a large budget. Beside the stock market, several other
assets are susceptible for predictive analysis and are potentially profitable. These assets
include commodities, derivatives, foreign currencies and more recently, cryptocurrencies.
We will present cryptocurrencies in the next section.

2.2 Cryptocurrencies

Cryptocurrencies are a form of digital asset that is secured by means of cryptography
and are usually decentralized, meaning they do not rely on a trusted third party for
transactions like banks or credit card companies. Instead they handle transactions
in a public ledger, for example a blockchain. They generally have no intrinsic value,
but are exchanged for fiat currencies like US dollars, Japanese yen or euros based on
supply and demand. The prices fluctuate substantially. The following subsections will go
over the fundamentals of cryptocurrencies using Bitcoin as example, some alternative
cryptocurrencies (Altcoins) and the characteristics of trading cryptocurrencies.

2.2.1 Fundamentals

Cryptocurrencies are di�erent and have their own characteristics compared to others.
Some share more similarities than others and most are based on the concept of the
first successful cryptocurrency, Bitcoin. The white paper for Bitcoin was published
in 2008 under the pseudonym Satoshi Nakamoto [10]. Nakamoto published the first
open-source client in 2009 which is when the Bitcoin network went online. The concept
of Bitcoin was revolutionary for several reasons. It achieved distributed consensus and
managed to prevent double spending attacks, a problem where an attacker spends his
money more than once, present in distributed digital cash before Bitcoin. The following
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2. Background

Figure 2.3: Illustration of the verification of transactions in Bitcoin; Satoshi Nakamoto,
Bitcoin: A peer-to-peer electronic cash system [10]. In the leftmost block, owner 0 sends
a transaction to owner 1. This balance received in this transaction is used in the middle
transaction from owner 1 to owner 2. The leftmost transaction along with owner 2’s
public key is hashed and signed by owner 1’s private key and can be verified with owner
1’s public key.

few paragraphs give a short overview over the functionality of Bitcoin, as presented in
Nakamoto’s white paper.

Bitcoin secures its transactions using asymmetric cryptography, i.e. the Elliptic Curve
Digital Signature Algorithm (ECDSA). In asymmetric cryptography, a user generally has
two keys, a public key and a private key. The first one can be made accessible to the
public while the latter one needs to remain private. The keys are then used to perform a
one-way function, where one of the keys is used to encrypt, and the other one to decrypt
a message. In the case of Bitcoin, the private key is used to create a signature of a
transaction, which can be verified with the user’s public key. The transaction is signed
by encrypting it with the private key and can be checked by decrypting it with the public
key and then comparing it with the original message. Through this mechanism, only a
person holding the private key can create valid transactions.

To carry out transactions, a user broadcasts them to the Bitcoin network. Several
transactions are then combined into a block. Only valid transactions are allowed into a
block, so the peers that receive a transaction have to check if the transaction has been
signed by the sender and if the sender has enough balance, i.e. if the sender has unspent
balance received in an earlier transaction. To be able to do that, the fully participating
peers have to keep track of a history of all transactions. This process is depicted in
Figure 2.3.
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Figure 2.4: The blockchain of Bitcoin; Satoshi Nakamoto, Bitcoin: A peer-to-peer
electronic cash system [10].

In fact, every block and therefore every transaction since the beginning of Bitcoin is stored
in a chronologically ordered, linked list called blockchain. One essential characteristic
of the blockchain is, that every block contains a hash of the previous block. A hash is
the result of another type of one-way function, when applied to a block, results in a
collision-resistant fingerprint of it. Since every block contains a hash of the preceding
block, the whole list is cryptographically secured up to the first block, see Figure 2.4.
Changing a block somewhere in the blockchain would mean changing all following blocks
as well in order to result in a valid chain.

This alone however is not enough to secure the blockchain. Bitcoin employs a proof-of-
work system. For a new block to be created, a simple but computationally expensive
problem has to be solved, i.e. applying a hash function to di�erent values until the result
lies within a target range. Now, if a block is changed, the work for that block along with
the work of all following block would have to be redone. Bitcoin defines that the longest
chain with all valid blocks (and all valid transactions) is the valid chain, representing the
majority vote of the computational power in the network. Additionally to making the
blockchain tamper-proof, this mechanism also prevents double spending attacks. The
probability of a transaction being invalid, because another longer valid chain without the
transaction emerges, becomes exponentially less likely, the more blocks are added.

The di�culty of this proof-of-work is set dynamically, so that the collective computational
power of the Bitcoin network finds a solution and therefore a new block every ten minutes
on average. This creation of new blocks is also referred to as mining. The person that
mines a new block is rewarded new currency. This acts both as incentive for peers to
behave honestly and as a distribution mechanism for the currency, especially in the
beginning. As a counter measure against inflation, this reward is halved every 4 years
and will eventually run out around the year 2140. Miners are also awarded all transaction
fees, which users can voluntarily include in a transaction, so that miners will prioritize
them. The mining reward and transaction fees are a strong incentive, so that it is
game-theoretically more profitable for miners to act honestly, as long as they do not have
a majority of the computational power.

As laid out above, the whole transaction history is included in the publicly available
blockchain. As it would be undesirable to have one’s real name associated to every
transaction ever made, Bitcoin uses the public key of users (or the hash of that) as
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Figure 2.5: Bitcoin price in US dollars over the years, https://coinmarketcap.com
[57].

pseudonyms for users. This way, their identity stays hidden (to some degree).

Bitcoin’s popularity has increased over the last years. Its value in USD, while having
been volatile from the beginning, rose steadily from a few cents until reaching its peak of
almost 20,000 US dollars for one Bitcoin in December 2017. From then it dropped to
around 3,500 US dollars as of January 2019, see Figure 2.5. Bitcoins can be traded for
traditional currencies on Bitcoin exchanges. Because of this popularity and the relatively
high trading volume, there have been many exchanges for Bitcoin over the years. Some
of these exchanges were allegedly associated to illegal activities and shut down, the most
prominent case being Mt. Gox [56]. This as well as Bitcoin being used for payments at
numerous illegal darknet sites brought some negative publicity.

Bitcoin also has some inherent flaws. One of the problems is scalability. The blockchain’s
size surpassed 200 GB of size in early 2019 and will grow steadily. The size of blocks is
limited and only about 4,000 transactions fit into one block. Because a block is mined
every 10 minutes, this means that only around 7 transactions can be handled per second
on average, a rather small number compared to for instance credit card systems. This
can result in very long waiting times or high fees in the Bitcoin system when carrying out
transactions. Finally, as mentioned briefly above, Bitcoin is not completely anonymous,
only pseudonymous. There are ways of tying di�erent Bitcoin addresses together (hashes
of public keys) that belong to the same person. Because there generally has to be some
sort of interface to conventional money, usually via exchanges, there are points where
personal information could be leaked. At the very least these exchanges have to be
regarded as trusted third parties, something that Bitcoin’s goal was to avoid. If one’s
information gets linked with a Bitcoin address (or all of that persons Bitcoin addresses),
every purchase ever made is visible in the (public) blockchain.
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Implementing changes into Bitcoin is di�cult, because the users have to agree and update
their client. Otherwise a fork occurs, i.e. the cryptocurrency splits into two new ones,
one that accepted the changes and one that did not. This happened for instance when
Bitcoin split into Bitcoin and Bitcoin Cash. Due to this criticism and the di�culties
faced when implementing changes into the Bitcoin protocol, along with the immense
hype around cryptocurrencies in general, many alternative cryptocurrencies (altcoins)
have emerged over the years. Some of them will be presented in the next section.

2.2.2 Altcoins

Since Bitcoin’s release, over 5,000 di�erent cryptocurrencies have been introduced as
of early 2019 [58]. These usually take on one of the flaws of Bitcoin, improve in a very
specific aspect or introduce totally new features.

Monero is a cryptocurrency based on a paper from Van Saberhagen [59] and improves on
anonymity, making it impossible to link transactions. IOTA is a cryptocurrency that
introduces the tangle, a directed acyclic graph, to combat the scalability problem of
Bitcoin [60]. Ripple also improves on scalability, by replacing the blockchain with fewer
server nodes that find consensus on transactions every few seconds. Ripple works closely
together with banks and features representing other currencies and IOUs (“I owe you”s)
[61].

A popular example of a cryptocurrency that introduces a completely new feature is
Ethereum [8]. Like Bitcoin, Ethereum has a blockchain securing the transactions. However
on top of that, Ethereum introduces a Turing complete scripting language, allowing
the deployment and execution of distributed applications on the blockchain, and in
particular smart contracts. As briefly mentioned in chapter 1, smart contracts allow
that parties come to a cryptographically enforced agreement and eliminate the need for
notaries (in some cases) [9]. As of early 2019, Ethereum was the second to third largest
cryptocurrency in US dollar market capitalization, contested by Ripple [15][58].

This rapid development of altcoins and cryptocurrencies brings a high dynamic to
the market. The question of whether or not the Bitcoin price influences all other
cryptocurrencies is an interesting one, and will be looked into in this thesis.

2.2.3 Trading cryptocurrencies

Cryptocurrency exchanges act as an interface between cryptocurrencies and conventional
money. Aside from mining, trading is the way for people to acquire cryptocurrencies.
Since (most) cryptocurrencies have no tangible value, their price is determined at these
exchanges based on supply and demand. Their price development is however very like
that of stocks. For this reason, we can apply the concepts about time series and stocks
mentioned in Section 2.1 to cryptocurrency price movements.
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We can translate (most) of the concepts of technical analysis directly to trading cryptocur-
rencies. Sentiment analysis is more or less the same as well. However, cryptocurrencies
do not have fundamental data, at least not in the way that stocks have data about their
company’s revenue, profit and so on. There are other numbers that represent the general
acceptance of a cryptocurrency. In Bitcoin for instance, the number of currently active
miners, the current number of transactions in the system, the transaction fees in the
current block could give similar information.

There also are some di�erences between trading cryptocurrencies and trading stocks.
When looking at the price development of cryptocurrencies from the beginning up until
early 2019, it becomes apparent that most cryptocurrencies are (similar to penny stocks)
very volatile, i.e. they have a lot of price movements over small periods of time. Unlike
(most) penny stocks however, the trading volume of cryptocurrencies is rather high [15].
Another di�erence is, that cryptocurrency exchanges are open 24 hours seven days a
week, unlike conventional stock exchanges that close on weekends and at night.

Having real-time stock data can be very expensive. The professional trading platform
Bloomberg Terminal which provides real time data of stocks, analyses and many more
services, costs around 24,000 US dollars per year [62]. There are of course cheaper
alternatives or the data might be included with one’s broker, but with cryptocurrency
exchanges, this data usually comes for free. Binance for instance, one of the currently
largest cryptocurrency exchanges, and most others make this data available in their free
API. Alongside providing price data in very fine granularity (up to individual trades),
the APIs o�er ways to place orders. This is very useful for automated trading.

Like with stocks, the trading orders that are carried out are usually subjected to fees.
Some exchanges distinguish between maker orders, orders that are placed into the order
book and provide liquidity, and taker orders, which take orders out of the order book
and remove liquidity. The fees vary from exchange to exchange. They are around 0.075%
to 0.3% of the order for taker fees, while maker order fees range from 0 to 0.1%, often
depending on one’s monthly trade volume. The traded volume is so high, that despite
these relatively small fees, the exchanges are making millions in daily revenue, according
to an estimation of Bloomberg (Figure 2.6) [63].

The volatility despite the high trading volume along with relatively low fees and free
APIs make cryptocurrencies an ideal candidate for testing automated trading strategies
of any sort. Especially high frequency trading does not seem to be as penalized as with
stock brokers or at least does not require a high investment in software or equipment.
For these reasons, Bitcoin and other cryptocurrencies have become popular research
candidates for analyzing and predicting their price movements. The benefits are similar
to those of stock price prediction. We will present some of the approaches below. Note
that research that is similar to this paper will be presented on its own in Section 2.5 and
that most of the research has been done only on Bitcoin.

The attempts for predicting cryptocurrency prices are various in their methodology,
relying on di�erent models and data. In 2015 Kristoufek researched what di�erent factors
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Figure 2.6: Estimated daily revenues of various cryptocurrency exchanges, according to
a March 5, 2018 Bloomberg article Crypto Exchanges Are Raking in Billions of Dollars
[63].

influence the price of Bitcoin [64]. There has been analysis on the influence of what we
earlier defined to be similar to fundamental data in cryptocurrencies, also in 2015, when
Greaves et al. tried using the transaction graph as means for predicting the price of
Bitcoin with a price direction accuracy of 55% [65].

Sentiment analysis is a computer science field with numerous applications, where text
is automatically analyzed and assessed based on the subjective feeling behind it, either
leaning towards a positive or negative sentiment [37]. One of these applications is to
analyze news, Twitter posts (Tweets) or other media in order to determine the sentiments
towards an asset like cryptocurrencies or Bitcoin. In 2014, Kaminski analyzed the
sentiment of Twitter posts and their relation with the Bitcoin closing price and volume
[66]. Matta et al. studied the correlation of the Bitcoin price’s spread and Tweets as well
as data of Google Trends in 2015 [67]. Georgoula et al. also analyzed Twitter posts using
support vector machines and found a positive correlation to the Bitcoin price [68].

There have been attempts using machine learning by Madan et al. in 2015 [69] and more
specifically neural networks [70] [71] for forecasting the price of cryptocurrencies. These
will be presented after the two following introductory sections about neural networks
and their evaluation.

21



2. Background

2.3 Neural networks
We will now discuss neural networks as a method for arbitrary function approximation,
the main concept used in this thesis for predicting the price or trading signals for the
cryptocurrency Ethereum. We will first go over machine learning in general as well as
feature engineering and then introduce the theory behind neural networks and more
specialized concepts such as recurrent neural networks, long short-term memory cells and
convolutional neural networks.

2.3.1 Machine learning

Machine learning is a subset of artificial intelligence and is used for solving tasks based
on learned patterns and models from previous data. In contrast to building a specific
set of instructions or an algorithm, machine learning is learning to act by analyzing
data. Machine learning is used to find patterns in data automatically. It is used in
many di�erent fields, such as biology, physics, medicine and of course computer science.
Specific use cases include financial fraud detection, spam detection, face detection, speech
recognition and so on [72].

The tasks that computers traditionally carry out might be complex and computationally
expensive, but can be formalized in a step-by-step algorithm, that somebody came up
with and a programmer implemented in machine-readable code. There are, however,
tasks that cannot be formalized easily or not at all; tasks that require intelligent behavior
or that may even exceed the intellectual capabilities of humans. While voice and image
recognition are examples for the former, weather predictions and analyzing astronomical
or microbiological datasets are instances of the latter, in a sense that the amount of data
which has to be taken into account is beyond being a manageable task for the human
brain. For these tasks, machine learning is used, which takes advantage of the rapidly
increasing computational power, disk space and memory capabilities of modern hardware.

Problems solved or at least tackled by machine learning generally involve one or more
input parameters, also called features and one or more outputs called target(s). A large
data set (of at least input values) is required for the learning process. Here, the goal is
to find or approximate a function, which maps these input values to the right output
values or to find patterns within the data.

Using a machine learning algorithm is usually divided into two phases: the training or
learning period, where the algorithm uses a defined set of examples to learn from, and a
testing period, where the algorithm’s performance is tested on a di�erent set of samples.
Depending on the way in which the learning is accomplished, di�erent machine learning
algorithms can be divided into the following categories [73].

• Supervised learning is a class of learning algorithms trained on labeled data.
In other words, for the input values of every sample in a training set, the right
output value or (ground truth) label is given. In the learning process the used
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learning algorithm generates a function that maps the input to the output as closely
as possible, according to a defined metric. This function can then be applied on
unobserved input values to test the trained model or predict the output.

• Unsupervised learning is, in contrast to supervised learning, not dependent
on labeled input data. The algorithm analyzes the given input data to detect
anomalies, group the data by similarities (clustering), etc.

• Semi-supervised learning is a mixture of the former two methods, where a small
amount of the training data is labeled while the rest is unlabeled.

• Reinforcement learning is a technique where instead of providing the right
output values (labeled data), a reward function is given. The learning algorithm
has to find the right set of actions in order to maximize the reward, usually through
means of trial and error. Learning to play games is one of the usage examples for
reinforcement learning, for instance the chess program AlphaZero developed by
(Google) DeepMind was trained by playing games against itself and within 24 hours
(allegedly) managed to defeat the best chess programs [74].

Supervised learning can be divided into two categories based on the type of output data
(targets) used. If the goal is to map the input values to a discrete and finite number of
classes it is called classification. Regression refers to the case, where the output values
are continuous. An example for a classification problem would be the recognition of
cats on images, where the training set consists of labeled data with two possible classes
“image contains one or more cats” and “image does not contain any cats”. An example
for a regression problem is forecasting a companies stock price based on historic values.

There are numerous di�erent machine learning algorithms, each used in di�erent areas
and with its own advantages and disadvantages. The following list gives a brief overview
over di�erent methods.

• Linear regression is an elementary method and simple example for supervised
learning [75]. The output function is modeled as a sum of the products of every
input with a coe�cient plus an o�set. For p di�erent inputs or predictor values,
linear regression looks as follows.

Y = —0 + —1X1 + —2X2 + ... + —pXp + ‘ = —0 +
pÿ

i=1
(—iXi) + ‘

Y is the dependent output value, X1, X2, ..., Xp are the input values, —0, —1, ..., —p

are unknown coe�cients and ‘ is the error term. A common measure for closeness
is the squared di�erence between the predicted value of the model and the actual
value. The coe�cients are generated by calculating the values —0, —1, ..., —p that
minimize the sum of the squared di�erence for every training sample. An example
for a linear regression with one input (p = 1) can be seen in Figure 2.7.
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Figure 2.7: Linear regression for one-dimensional input; James et al., An introduction to
statistical learning [75]. The red dots are the data samples, the blue line the approximated
function and the vertical lines represent the errors. The sum of the squares of these
errors is to be minimized.

• Logistic regression is another regression model that (in its simplest form), instead
of approximating a function of the output, estimates a probability of two possible
outcomes [75]. The model looks as follows.

P (Y = 1) = 1

1 + e
≠

!
—0+

qp

i=1(—iXi)
"

P (Y = 1) is the probability of the output being of class 1. —0 or —i are the
coe�cients and Xi the input values, as with linear regression. In fact the (negative)
exponent is the term that is used in linear regression (without the error).

• Support vector machines (SVM) use lines, or in the more general multi-
dimensional case hyperplanes, to group data into classes [73]. The hyperplanes
are selected so that the distance between the hyperplane and the nearest point
or vector of each class (margin) is maximized. These nearest points are called
support vectors. The margin is maximized so that new unobserved data is more
likely classified correctly. Separating data into two classes with a line is very simple
if the data is linear separable. If it is not, then the SVM can still be applied by
using slack variables and/or the kernel trick, where the data is lifted to a higher
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Figure 2.8: Support vector machine for two dimensional input; James et al., An intro-
duction to statistical learning [75]. There are two classes of data, blue and purple. The
dots on the dashed line are support vectors. The hyperplane, in this case a line, is drawn
as a solid black line. The distance between the support vectors and the hyperplane is
maximized.

dimension in order to make the data linear separable. An example for a support
vector machine can be seen in Figure 2.8.

• Decision trees are used as a predictive model [72]. At every split, a condition is
checked and the algorithm continues in the according branch. A simple example
for such a condition or splitting rule is a threshold on the value of a feature. At
every split, the best feature according to some measure is selected. For instance
the feature with the highest information gain could be selected by calculating the
entropy. Decision trees can be used for classification or regression.

• Random forests are an ensemble of decision trees [76]. Every tree generates a
prediction and the prediction supported by the majority of trees is chosen. For
this method, several decision trees are built. At every tree at every split, the best
feature out of a random subset of all features is selected. Random forests have the
advantage of being e�cient and fast learning at the price of high overfitting.

• Bayesian networks represent the conditional dependencies of features in an
directed, acyclic graph. Features are symbolized as nodes and (directed) conditional
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relationships as edges. They are used to infer the probability of an output and
to visualize conditional (in)dependence. There are algorithms for generating the
structure of the Bayesian network and the parameters, that would go beyond this
brief synopsis, but can be found in an article by Friedman [77].

• Eventually, Aritficial Neural Networks are also a type of machine learning
algorithm. They will be explained in Section 2.3.3.

2.3.2 Feature engineering
To be successful, machine learning algorithms typically require large amounts of data to
be trained on. This data in its raw form is often not suitable for machine learning. There
might be too many di�erent input dimensions, the data might be scaled in a wrong way
because of a small number of outliers or errors in measurement, or the data might simply
not be usable in its current form for some other reason. An essential part of training a
successful machine learning model for solving a certain task is preprocessing this raw
data by engineering good input features from it, in the sense that the features should be
expressive of the outcome, and then transforming them to suitable formats or ranges.
This process is called feature engineering [78].

Not all features influence the target output in the same way. For example when trying to
forecast if it is going to snow the next day, the current time of the year, e.g. January,
might be more helpful than the current wind speed. Selecting good features is hard and
requires expert knowledge in the specific domain, which in regard to the weather example
the author of this thesis certainly does not have. Good features are desirable, whereas
features that have little to no impact at all on the outcome should be discarded. Raw
data can come in many di�erent forms, such as images, text or numbers. And while
some form of transformation is certainly necessary for formats like images and texts to
be readable by the model, even numerical data often has to be transformed in some way
to be made usable.

To expand upon the weather example, assume we want to forecast the temperature of
the next day. In our hypothetical raw data, we have the daily temperature measurements
over the last 40 years. The labeled data is two dimensional consisting of the commonly
used Unix timestamp, which is measuring the seconds that have elapsed since January
1, 1970, and the temperature in degrees Celsius as label. The Unix timestamp is not
going to be very helpful in predicting the weather. If we transform the timestamp
through simple calculation into two new features, the month and day in which the
temperature was measured however, the situation changes. Suppose it is hot in the
northern hemisphere’s summer months, e.g. in July (7th month), the new data now
has numerous data samples with higher temperature in combination with the month 7.
The machine learning algorithm might be able to learn faster and make more accurate
predictions. This fictional example is shown in Figure 2.9.

The process of selecting, extracting, combining or reducing features is often done manually
and can be time consuming. The steps can involve iterations of brainstorming and deciding
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Figure 2.9: Simple, fictional example of feature engineering in the context of temperature
forecasting. The raw data’s (left) timestamp is converted to month and day (right). Note
that the month and day act as the features (input), while the temperature is the label
(output).

which features to use and testing how the impact on the model’s performance [79]. To
aid the process, a variety of mathematical concepts are used. An example for a technique
helping to reduce the input dimensions is principle component analysis (PCA) [80]. Too
many input dimensions can lead to overfitted models and bad performance. PCA is a
statistical method which can simplify datasets. The raw and possibly correlated input
data is approximated by a smaller set of uncorrelated features, the principle components
[81]. Other methods for best feature selection such as the analysis of variance (ANOVA),
F-tests or cross-correlation calculation are included in popular machine learning libraries
(e.g. scikit-learn [82]). Dingli et al. used these methods for selecting the best technical
indicators for stock prediction in 2017 [79].

The values and scale of the features are other very important aspects. If the values of the
various inputs are di�erent in sizes of several orders of magnitudes, the larger features
can outweigh the other features. Linear functions for instance are very sensitive to this
phenomenon [78]. A solution to this problem is to normalize the data by scaling the
di�erent features to a common range, in a certain way. Doing so increases the learning
rate and overal performance of machine learning algorithms, e.g. of neural networks [83].
There are several di�erent ways to do this. The preprocessing approaches which are used
in this thesis will be explained in Section 3.4.

2.3.3 Overview over neural networks

Neurons, a mathematical model inspired by their biological counterparts found in the
human brain, were proposed by McCulloch et al. in 1943 [84]. Based on these neurons,
Rosenblatt et al. introduced the Perceptron by connecting several of them [85], which
are the foundation for neural networks developed in later years.
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Figure 2.10: Illustration of a single Neuron; Andrew Ng, Sparse autoencoder [86]. The
neuron has n inputs (x1, x2, ..., xn) each with its own weight (W1, W2, ..., Wn) and a bias
b. The output ŷ is ŷ = f

1 qn
i=1 (Wixi) + b

2
.

Neural networks are mathematical models for approximating non-linear functions. They
have several neurons and connections between them. Every neuron calculates an output
based on the given input and the weight of its incoming connections. The (supervised)
learning is accomplished by running a backpropagation algorithm that adjusts these
weights based on the supplied output value (label). Several neurons are stacked inside
layers. Neural networks that consist of an input layer, a hidden layer and an output layer
are sometimes referred to as shallow neural networks, while deep neural networks consist
of more hidden layers. The following paragraphs will go over this concept in more detail,
based on Ng’s article of 2011 [86].

A neuron has several incoming connections from previous nodes, inputs or the bias, as
well as one output. The products of every input (including the bias) and its corresponding
weight are summed up and an activation function is applied. The result of one neuron is
calculated as follows, an illustration is shown in Figure 2.10.

ŷ = f

1 nÿ

i=1
(Wixi) + b

2
(2.1)

Some commonly used activation functions f(·) include the following.

• Sigmoid function:

f(x) = sigmoid(x) = ‡(x) = 1
1 + e≠x

(2.2)
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• Hyperbolic tangent:

f(x) = tanh(x) = e
x ≠ e

≠x

ex + e≠x
(2.3)

• Rectifier:

f(x) = max(0, x) (2.4)

Note that when using the sigmoid function, the result ŷ equals the one from logistic
regression. The computation is usually sped up by vectorizing. Given the input vector

x =

S

WWWWU

x1
x2
...

xn

T

XXXXV
and the weight vector W =

S

WWWWU

W1
W2
...

Wn

T

XXXXV
, the calculation of ŷ can be expressed as:

ŷ = f(W €
x + b) (2.5)

with W
€ being the transposed weight vector.

Neurons are combined to form larger neural networks, as seen in Figure 2.11. To
demonstrate the calculation of a neural networks output, we will use a popular notation
(in this form or slightly di�erently used for instance by Ng [86]): o

[l] means o in layer l.
Calculating a

[l+1] , the activation (output) vector of the layer l + 1, or in other words,
the output of every neuron in that layer, is computed as follows.

a
[l+1] = f(W [l]

a
[l] + b

[l]) (2.6)

W
[l] is the weight matrix of the previous layer l, i.e. the stacked, transposed weight

vectors for every neuron in that layer. a
[l] is the activation (output) of the last layer l,

with the first one being a
[1] = x.

In general, several input samples are to be calculated. Calculating the result of several
samples can be vectorized in a similar fashion.

Remember x as the input vector of a single neuron. Now let x
(i) be the i

th of m input
sample vectors and X be the matrix of horizontally stacked training samples.

X =

S

WU
| | |

x
(1)

x
(2)

. . . x
(m)

| | |

T

XV
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Figure 2.11: Example of a (shallow) neural network with an input layer, a hidden layer
and an output layer; Andrew Ng, Sparse autoencoder [86]. There are three input features
x1, x2, x3, three neurons in the hidden layer, one neuron in the output layer. The +1
nodes denote the biases, which get their value from their bias weight.

We can now calculate the second (first non-input) layer with:

A
[2] = f(W [1]

X + b
[1]) (2.7)

A
[2] is a matrix of the outputs of layer 2 for every training sample stacked horizontally.

A
[2] =

S

WU
| | |

a
[2](1)

a
[2](2)

. . . a
[2](m)

| | |

T

XV

Consequently, subsequent layers are calculated using:

A
[l+1] = f(W [l]

A
[l] + b

[l]) (2.8)

This vectorization provides an e�cient calculation over all data samples. The process of
calculating the output of a neural network is also called forward propagation or forward
pass.
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The weights of the connections of neural networks are initialized randomly, which will
possibly result in a very poor performance. To improve a neural network’s performance,
learning is required. Since we are looking at supervised learning, we have a whole set
of labeled data, i.e. the label y

(i) for each input vector x
(i) is given. The – via forward

propagation calculated – output ŷ
(i) is supposed to be an approximation of the label

y
(i). We need to define a loss function (or error function) L(ŷ(i)

, y
(i)) to measure how

accurate this output is compared to the label. We then define the cost function as an
average of the losses over all samples. The total cost is J = 1

m

qm
i=1 L(ŷ, y). Note that in

some references the terms loss function and cost function are used synonymously and are
sometimes defined slightly di�erently. Numerous di�erent loss functions can be selected,
often depending on whether it is a classification or regression problem. A common loss
function for regression is the squared error while for classification one can measure how
far the probability of the predicted class diverges from the actual label.

The loss for each sample, should be as small as possible. Gradient descent is a method used
for finding (local) minima of a function by calculating the gradient of the function and
stepping in the negative direction of it [87]. We use gradient descent in order to minimize
the loss, by subtracting the gradient with respect to a specific weight from that weight
for every weight and the bias. In particular, we use a method called backpropagation
to e�ciently compute the gradients in directed computational graphs such as neural
networks (backward pass). The method can, for example, be found in the book Artificial
Intelligence: A Modern approach by Russell and Norvig (pp. 726-737) [88]. We will
present it here as well. To illustrate how backpropagation works, we will show an example
for one neuron. We will calculate the gradient of the loss function with respect to one
weight W1 for one sample. We begin by splitting the computation for the output of one
neuron (Equation 2.1) into two parts:

z =
nÿ

i=1
(Wixi) + b

ŷ = ‡(z)

We chose the sigmoid activation function ‡. Now let the loss function L be:

L(ŷ, y) = 1
2(y ≠ ŷ)2

We want to derive L with respect to W1, dL
dW1

. By applying the chain rule twice we get:

dL
dW1

= ˆL
ˆŷ

· ˆŷ

ˆz
· dz

dW1
(2.9)
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These derivatives are:

ˆL
ˆŷ

= ŷ ≠ y

ˆŷ

ˆz
= ‡(z)

1
1 ≠ ‡(z)

2

dz

dW1
= x1

Putting them together we arrive at:

dL
dW1

= (ŷ ≠ y)‡(z)
1
1 ≠ ‡(z)

2
x1

Given a learning rate –, the weight W1 is now updated to the new weight W
Õ
1 like this:

W
Õ
1 = W1 ≠ –

dL
dW1

(2.10)

The process works analogous for the other weights and the bias. For other activation
functions or loss functions and a weight (or bias) Wi we use:

dL
dWi

= ˆL
ˆŷ

· ˆŷ

ˆz
· xi (2.11)

Applying backpropagation on a neural network with more layers and several neurons per
layer works similarly. The weights and bias of every layer are adjusted from the last to
the first, while propagating the error. This calculation can be vectorized as well, making
it a rather e�cient learning algorithm. Neural networks have various applications, which
were already listed in Section 1.1. In their standard form, i.e. the form we explained
above, neural networks are unable to learn sequential or temporal dependencies. They
are sometimes called feed forward neural networks. The next section will introduce an
approach for dealing with these problems.

2.3.4 Recurrent neural networks

So far, the neural networks we looked at were acyclic. And even though samples a�ect
the weights in the learning process, it is very di�cult for a conventional neural network
to recognize sequential or temporal dependencies in the data. Dependencies in data
sequences like time series can be found everywhere and the assumption that there is one
in stock (or rather cryptocurrency) price data is of essence for this thesis.
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Figure 2.12: Neuron with recurrent connection (left) and unrolled (right); Christopher
Olah, Understanding LSTM Networks [90].

Assume a chef at an imaginary cafeteria. The chef is bored and even though the only
meal always costs the same, he hands out di�erently sized portions, large and small ones,
depending on his mood. If it is sunny outside, exactly every second portion is large. If it
is cloudy or raining, only every third portion is large. A feed forward neural network
trying to predict the size of the next meal the chef is going to hand out will possibly
perform poorly and will not be able to perform much better than guessing, even though
this task appears rather simple. The decision of the feed forward neural network is only
a�ected by the current input, no matter how complex it is.

To solve this problem, recurrent neural networks (RNNs) have been invented. The idea
was to loop information that will serve as a memory. They are neural networks that
allow recurrent connections between neurons [89]. Recurrent connections are connections
from a neuron to either itself or a neuron that came before it, making the network no
longer acyclic. The way these connections work is that the output of the neuron is used
as input in the next sample (time step), so that previous data can potentially influence
the output of the network. A connection where the output of a neuron is simultaneously
used as its input is graphically illustrated in Figure 2.12. For a better understanding,
the connections are usually unrolled in time, which means that for every time step the
same node is drawn, forming a long chain of neurons.

Recurrent neural networks are successful in solving tasks that are based on sequences,
like the example with the cafeteria chef above. They are widely used for sequential
problems, such as text analysis, speech recognition, video analysis, natural language
processing and time series analysis [91]. Recurrent neural networks can be trained with
gradient descent, the most common approach for this is backpropagation through time
(BPTT). On unfolded recurrent neural networks, BPTT works conceptually similar to
backpropagation of multi-layer feed forward neural networks. We will not explain this
approach here, but refer the reader to the paper of Werbos published in 1990 [92] or
a very compact explanation in the book Supervised Sequence Labelling with Recurrent
Neural Networks by Graves (pp. 19-20) [89].
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2.3.5 Long short-term memory (LSTM)
When training recurrent neural networks, the error is backpropagated for every (unrolled)
time step. At every step, the impact the gradient has on the weights gets exponentially
smaller. This problem is known as the vanishing gradient problem [93]. Hochreiter
was the first to identify this behavior and its cause [94]: The derivatives of common
activation functions have a range between 0 and 1 and are backpropagated by applying
the chain rule (i.e. multiplying the derivative) in every layer. Unrolling RNNs over n time
steps is analogous to having n layers, therefore the backpropagated gradient becomes
exponentially smaller for every step in time [95]. Due to the weight changes becoming
so small, recurrent neural networks using gradient descent learning are unable to learn
long-term dependencies.

In 1997, Hochreiter and Schmidhuber introduced long short-term memory (LSTM) [96]
as an approach that tackles the vanishing gradient problem. The internals of a single
LSTM unit (or cell) are more complex than those of simple neurons, but they can be
connected in a similar fashion. Figure 2.13 shows a single LSTM unit analogous to an
unrolled neuron of a recurrent neural network shown in Figure 2.12. Instead of a single
output, the LSTM cell has two outputs values, the memory ct and the actual output at.
Both these outputs are recurrent connections to the cell itself, i.e. time step t will have
the memory and output of time step t ≠ 1 along with the input of time step t as inputs.
Besides being fed to the cell in the next step, the output at is the actual output of the
cell at time step t.

The essence of an LSTM cell is the memory ct of the unit. The memory can store vital
information about (long-term) dependencies over long periods of time. New information is
stored in it according to the old memory, the old output and the input. The mechanisms
that control this flow are referred to as gates or valves. The forward pass functions as
follows (compare Figure 2.13 and compare [90]).

1. The forget gate controls what information of the memory from the last state is
passed into the current state. It is calculated like this:

ft = ‡(Wf · [at≠1; xt] + bf ) (2.12)

The input vector xt is concatenated with the output of the previous block at≠1, this
new vector is multiplied with the weight matrix Wf , the bias vector bf is added
and then sigmoid function is applied (element-wise). This forget gate output is
then element-wise multiplied with the memory of the previous state. Because of
the sigmoid function, the values of that vector are between zero and one. If a value
of the output vector of this forget gate is close to one, that value of the previous
memory state is carried over, if it is close to zero, that value will be “forgotten”.

2. After the forget gate, the memory is updated. A candidate vector C̃ is calculated
along with the output of the input gate it. The input gate will decide, which
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Figure 2.13: Visualization of the internals of an LSTM cell; Shi Yan, Understanding
LSTM and its diagrams [97].

parts of the memory will be updated, by an element wise multiplication with the
candidate vector, resulting in the new memory state Ct. This process, as well as
the calculation of these values works analogous to the forget gate:

it = ‡(Wi · [at≠1; xt] + bi) (2.13)

C̃t = tanh(Wc · [at≠1; xt] + bc) (2.14)

Ct = ft ◊ Ct≠1 + it ◊ C̃t (2.15)
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3. Finally, the output gate’s output ot is calculated and multiplied element-wise with
the tanh of the memory state Ct, resulting in at. This is the new output of the
LSTM unit:

ot = ‡(Wo · [at≠1; xt] + bo) (2.16)

at = ot ◊ tanh(Ct) (2.17)

Note that instead of using input vectors, several training samples can be stacked into a
matrix and fed at once to speed up calculation, as with feed forward neural networks
above. There are many variations of LSTM units, some for instance containing peepholes,
where the di�erent gates are also concatenated with the previous memory state. The
forward and backward pass can be easily calculated, the concept is similar to feed forward
neural networks. The calculation varies for every di�erent part (gate) of the LSTM
unit. We will not list this here, but rather link to a short overview and collection of
all required equations for both forward and backpropagation (again) by Graves (pp.
37-38) [89], who used a slightly di�erent notation. LSTM networks are able to learn long-
term dependencies and are used for instance to analyze time series. The computational
complexity of the proposed training process for LSTM units is O(W ), with W being the
number of weights [96]. This complexity is equal to the one of backpropagation through
time (BPTT).

2.3.6 Convolutional neural networks

Another improvement of neural networks accredited to LeCun et al. is to apply a
mathematical convolution (or filter) to the input [98]. Networks based on this approach
are known as convolutional neural networks (CNNs) and were inspired by the visual
cortex of the human brain [99]. At first CNNs were mostly used for computer vision,
but they are also applicable to virtually any other domain such as natural language
processing, speech recognition and other areas. One of the advantages of convolutional
neural networks is that applying those filters minimizes the need for preprocessing of the
data. The CNN learns to filter the input data in a way that eliminates or rather reduces
the need for hand engineered features based on expert domain knowledge.

Typically, CNNs are structured like multi-layer feed forward neural networks, but in
addition have one or more convolution layers and pooling layers placed at the beginning
[100]. The input is connected to a convolution layer that applies a discrete convolution
based on a filter kernel. The output of this is fed to the pooling layer. These two steps
can be repeated several times by feeding the output of the pooling layer into another
convolution layer and so on. The input can have one or more dimensions. The dimensions
of the kernel are chosen in accordance with the input. In image processing the data is
usually two or three dimensional (width ◊ height ◊ channel for RGB color images). A
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Figure 2.14: Illustration of a 2D convolution; Dumoulin and Visin, A guide to convolution
arithmetic for deep learning [100]. The values of the timeframe (dark blue) of the input
(blue) are element-wise multiplied with the flipped kernel (red) and added up to get the
corresponding value of the result. Edges are ignored.

two dimensional example is shown in Figure 2.14. Like other neural networks, CNNs can
be trained with backporpagation [101].

In the convolution layer a convolution between the kernel and the corresponding cluster
(window) of input values is calculated. In other words the (flipped) kernel and the window,
which are the same in size, are multiplied element-wise and then all these values are
summed up into a single (scalar) value. On this resulting value, an activation function
can be applied. The window is then moved by the size of the stride and applied to
that cluster of inputs. For instance, if the input is a 2d image and the stride is 1, the
convolution starts at the top left, and is moved to the right until hitting the edge, then
moved one down and from the left to the right again until it hits the bottom right corner.
The edges can be handled di�erently if required, where the values are e.g. duplicated
outside of the image (so-called padding), so that the values are not empty if the kernel
sticks out over the image’s edges. The calculation of this two dimensional case between
an input I and a kernel K with K œ Rm◊n is as follows. For an illustration of an example
see Figure 2.14.
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Figure 2.15: Illustration of max-pooling; Dumoulin and Visin, A guide to convolution
arithmetic for deep learning [100]. The maximum value of the window is selected.

R(x, y) = (I ú K)(x, y) =
m≠1ÿ

i=0

n≠1ÿ

j=0

A

I(x + i, x + j)K(m ≠ i, n ≠ j)
B

(2.18)

Pooling is sometimes also referred to as downsampling and is used to reduce the dimen-
sionality of the features and discard superfluous information. In this step, the values
of a cluster of defined size of inputs are reduced to one value, according to the type of
pooling. For instance, max-pooling selects the maximum of these values, while average
pooling takes the average. An illustration of max-pooling can be seen in Figure 2.15.
Again, an activation function can be applied on the result. The purpose of pooling layers
is to prevent overfitting.

2.4 Evaluation of neural networks

In Section 2.3 we briefly discussed the concept behind neural networks and how they are
trained (how they learn). If we have a trained neural network model and we think about
using it, another important aspect comes to mind: We need to measure the performance
of the neural network.

Generally, when evaluating a neural network, we split our dataset into two parts. A large
training set (70% to 95%) and a small validation set (5% to 30%). The training set is
used for training the neural network. The neural network runs through all data samples
and learns by adjusting the weights through backpropagation. Through vectorization, we
can feed the network several data samples at once. Large datasets can be divided into
fixed sized batches. Because the backpropagation optimizes the weights in a way, so that
the cost function is minimized with regard to the training set, the training set cannot be
used for measuring the performance, as the neural network is biased towards this set.
Unobserved data, i.e. the validation set is used to accomplish unbiased measurements.
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We already introduced the cost function as a way to measure the performance of a neural
network over a sample. In the case of a regression problem, a common measure is the
mean squared error, while for classification problems, categorical crossentropy can be
used. We go over these cost functions more thoroughly in Section 3.6.

In classification problems, there are some additional performance metrics we can measure,
usually after the training has happened. We can measure the overall accuracy, i.e. the
percentage of correctly predicted classes. The mean/average accuracy is the average of
every accuracy per class. In binary classification, there are four cases: The first (positive)
class can be predicted truly or falsely and the second (negative) class can be predicted
truly or falsely. Precision measures the amount of true positive predictions in proportion
to all (true and false) positives. Recall (sometimes referred to as sensitivity) calculates
the amount of true positives in relation to true positives and false negatives. Specificity is
the number of true negatives in proportion to false positives and true negatives. Fallout
is false positives divided by true positives and false negatives, miss rate is false negatives
divided by false positives and true negatives [102].

Training over the whole training set once is called an epoch. A neural network can be
trained for an arbitrary amount of epochs. If trained for a large amount of epochs, the
performance on the training set will likely improve. The performance on the validation
set might actually get worse, in a phenomenon called overfitting. To prevent overfitting,
the number of epochs has to be carefully defined or an approach like dropout has to be
deployed. Dropout prevents overfitting by randomly dropping nodes and their connections
while the neural network is being trained [103].

Instead of splitting the data only once, it can be split into k parts, where each part is
used as a validation set, while the rest is used as training set. This method is called
k-fold cross-validation. Another approach is to set a ratio for training vs. validation
data, and then (randomly) select several di�erent splits, test each one and average their
performance, called Monte Carlo cross-validation [104].

Basically, any statistical indicator can be used for training or evaluating neural networks.
One can make use of domain knowledge to create a suitable measure for the problem
at hand. In the example of forecasting daily stock returns with neural networks, White
[105] suggested evaluating neural networks built for market trading purposes by the profit
generated on the basis of their predictions instead of their squared error, which is what
we do in this thesis.

2.5 Related work

In this section we will present some related work that is either similar in goal or method-
ology to this thesis. As stated in Section 2.1.5 there have been many attempts to predict
stock prices, some based on neural networks. And while forecasting cryptocurrencies
has been tried in the more recent years as well, the attempts have almost exclusively
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been focused on Bitcoin only. The following methods are based on machine learning
algorithms and use technical data to predict cryptocurrencies.

In their 2015 paper Automated Bitcoin Trading via Machine Learning Algorithms, Madan
et al. [69] tried to predict the price movement of Bitcoin using machine learning methods.
They used support vector machines (SVM), random forests and a binomial generalized
linear model (GLM). The authors used several di�erent data sets, daily data of price
and information about the blockchain and Bitcoin network as well as 10-minute and
10-second data of the price. The performance of the di�erent machine learning methods
was measured in regard to these di�erent data sets. They used a training and validation
split of 70% to 30%. The goal of the authors was to predict the sign of the in the
price development rather than the price itself, thus reducing the problem to a (binary)
classification problem rather than a regression. The GLM performed very well for the
daily data with an accuracy of 98.79%, while achieving only 8.5% for the 10-second and
53.9% accuracy for the 10-minute data. The support vector machine was used on the daily
data and performed worse with 27.16% accuracy, whereas the random forests performed
with 94.98% accuracy for the daily and 57.4% for the 10-minute data. It is worth pointing
out that these high accuracies are most likely due to substantial overfitting, since the
number of training samples for the daily data is rather low. All in all the authors come
to the conclusion that the evaluated methods are suitable for di�erent granularity of
data, since the daily data somewhat dampens the high volatility of Bitcoin.

McNally et al. made a similar attempt in their 2018 paper Predicting the Price of
Bitcoin Using Machine Learning [70]. Their goal was as well to predict the sign of the
price development. The used data included price data (open, high, low, close) as well
as mining di�culty and hashrate. For feature selection, an algorithm called Boruta
based on random forests was chosen. For prediction they used a (Bayesian optimized)
recurrent neural network and an LSTM network and compared their performance with
the ARIMA model. The authors used a 80% to 20% training and validation split and
utilized dropout to prevent overfitting. While both the recurrent neural network and the
LSTM network were able to outperform the ARIMA model, the LSTM model had both
the highest accuracy 52.78% and smallest root mean square error 8%. The recurrent
neural network had an accuracy of 50.25%, compared to the 50.05% of ARIMA. The
authors also investigated the performance di�erence of the di�erent models on both
the CPU and GPU, where the GPU is significantly faster for training and the LSTM
networking taking longer to train. The authors come to the conclusion that LSTM is
slightly better for finding long-term dependencies, but does overall not outperform the
used recurrent neural network significantly.

In the 2017 paper Prediction of Bitcoin exchange rate to American dollar using artificial
neural network methods by Radityo et al. [71] the authors tried to predict the closing
price of Bitcoin of the next day based on historical daily price data combined with
technical indicators. This resulted in a (relatively small) dataset of 1278 rows after the
calculation of technical indicators and normalization. The dataset was split into training
and validation set by 80% to 20%. The authors used neural networks which were trained
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di�erently, one with backpropagation (BPNN), one with genetic algorithm (GANN), one
with a hybrid of those two methods (GABPNN) and the last one getting evolved with
neuroevolution of augmenting topologies (NEAT). The performance was measured using
the mean absolute percentage error (MAPE). The GABPNN had the best performance,
with a MAPE of 1.883(±0.066)%, the BPNN was a close follow-up with 1.998(±0.038)%,
while NEAT was at 2.175(±0.096)% and GANN at 4.461(±0.49)%. The author also
measured the training time, where BPNN learned faster and needed only around 22.5%
of the time of GABPNN. They conclude that for their experiment, BPNN was the best
choice.

In the 2018 paper Anticipating cryptocurrency prices using machine learning by Alessan-
dretti et al. 1,681 di�erent cryptocurrencies were analyzed [106]. The authors collected
the daily average price, volume and market capitalization for a period between November
11, 2015 and April 24, 2018. These prices where then expressed in Bitcoin instead of
US dollar, to discard the development of the cryptocurrency market. Three di�erent
models where tested, two using (gradient boosting) decision trees and one using an LSTM
network. The models were used to predict the currencies with the best return and then
split an initial capital to buy a portfolio of the best n cryptocurrencies, where n and other
parameters (e.g. time window, number of epochs) were selected based on the sharpe ratio
and geometric mean optimizers. The portfolio’s increase in value of the tested period of
time is measured and compared to a simple moving average model. All three models are
able to outperform the simple moving average model. The LSTM model had the best
performance and was able to recognize dependencies over larger windows of time.

Sin et al. published a paper named Bitcoin price prediction using ensembles of neural
networks in 2017 [107]. The authors used an ensemble of multi-layer feed forward neural
networks between di�erent Bitcoin features and the Bitcoin price change of the next
day. The used data included 190 di�erent features including price, volume and market
capitalization of several di�erent cryptocurrency exchanges as well as many fundamental
features about the Bitcoin network, such as hashrate, block size, etc. The dataset
consisted of 780 samples. Five di�erent neural networks were created, which di�ered
only in their number of nodes in the two hidden layers. These networks were trained
over 30 epochs. After training, the importance of each neural network was determined
according to the Genetic Algorithm based Selective Neural Network Ensemble (GASEN)
method. The final output is the weighted and averaged output of every neural network
in the ensemble. This method was backtested on 50 days not used for training and had a
60% prediction accuracy over that time. The increase in value outperformed the previous
day trend following strategy used for comparison and increased its value by about 85%,
compared to the 38% of trend following.

The presented papers give a broad overview on the current state-of-the-art and the present
approaches for this or slightly di�erent problems. Most of these references are inclined
towards supporting the possibility of predicting cryptocurrency prices to some degree.
The di�erent approaches all have their own advantages and disadvantages. In this thesis,
we tried to adopt the good aspects of these papers, while improving on the oversights.
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Most of them use a method for selecting good features. However, some of the presented
papers su�er from a severe lack of training samples and are highly overfitted. We try to
use a larger amount of training samples and make an e�ort to prevent overfitting with
dropout. The LSTM networks were usually the best performing models in these papers,
at least out of the neural networks. We focus on three di�erent LSTM neural networks for
prediction, one of which also has convolution. We experiment with di�erent preprocessing
techniques and use Ethereum instead of Bitcoin. Another substantial di�erence is, that
we use the profit achieved by simulating trading with fees according to the predictions to
measure the performance of our neural network models. This is done to see the real-life
application of these predictions and to compare models with di�erent targets.
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CHAPTER 3
Constructing neural networks for
predicting cryptocurrency prices

In this chapter we discuss the concept and the methodology used in the practical part
of this thesis. In Section 3.1 we outline the concept and goal. Section 3.2 goes over
what kind of data were chosen as input features and why. Section 3.3 lists the di�erent
targets that we want our neural networks to predict as output. In Section 3.4 we present
the steps taken for preprocessing the data. Section 3.5 focuses on the architecture of
the neural networks and how we train them. Eventually, Section 3.6 describes how we
measure the performance of the neural networks.

3.1 Concept
For this part of the thesis, the general objective was to create a modular software tool
which allows for quick prototyping of di�erent neural network models, data preprocessing
techniques and targets. The models try to predict the price or other trading signals for
any cryptocurrency based on the preprocessed historic price data. The goal is to find the
model and preprocessing combinations that are the most profitable ones when trading
based on the model’s predictions. The main feature requirements can be summed up in
the following list. The tool has to ...

• collect raw historic data of any cryptocurrency.

• extract features and build targets from this data.

• preprocess the data.

• provide means for easy implementation of new neural network models.
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3. Constructing neural networks for predicting cryptocurrency prices

• train these models on the preprocessed training set.

• evaluate models based on a measure.

With the completed tool, several di�erent configurations can be tested and evaluated
quickly. To retain a manageable workload we need to narrow down some parameters. For
the cryptocurrency to predict we selected Ethereum for several reasons. Ethereum has a
very promising concept and a large market capitalization. Most of the similar research
has been done on Bitcoin. We wanted to see if Bitcoin influences the Ethereum price.

The next steps are as follows and will be described in-depth over the rest of this chapter.
We gather the historic price data of Ethereum and Bitcoin in minute intervals, extract
features, implement four di�erent targets, six di�erent preprocessing combinations and
three di�erent neural networks, two using LSTM cells and one using an LSTM and CNN
hybrid. We use these building blocks for carrying out our evaluation (see Chapter 5)
in order to answer the questions asked in Section 1.2. We are mainly interested in the
question if we can predict trading signals for Ethereum in a way so that we can derive a
profitable trading strategy from these predictions.

3.2 Input data

Choosing the input data for a neural network is an essential step. The importance of a
large number of training samples along with good features cannot be overstated. The
outline of this thesis already narrows the data down, but there are still several other
aspects to be considered. Our endeavor is based on the assumption that the price of
cryptocurrencies is influenced by previous data or information. Therefore the predictions
are based on sequential historic data, which fits our use of LSTM neural networks to find
these temporal long-term dependencies. For this historical data we need to set a time
range in which the data lies and the frequency for how far the single data points are
apart in time.

The paper by Schulmeister [45] mentioned in Section 2.1.4 suggests that (for stocks) the
profitability of trading approaches that exploit profit opportunities based on longer time
intervals decreases. This along with the low trading fees and fast APIs made us settle
for a one-minute frequency for our data, i.e. the data we are going to feed to our neural
networks is from every minute of the chosen time range.

Another important decision was what di�erent kinds of data we deem influential on
Ethereum. Although there may be more, we have pinpointed three di�erent categories in
Section 2.2.3 which are possibly influential on cryptocurrency prices (or Section 2.1.3 for
stock prices). To quickly recapitulate, these categories are the following.
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3.2. Input data

• Technical data
Historic prices (open, high, low, close), trading volume and number of trades of
every interval until now.

• Fundamental data
Data about the cryptocurrency network, such as hashrate, number of transactions,
number of miners, etc.

• Sentiment data
Information about the sentiment people have about the cryptocurrency. This can
be from newspaper articles, Tweets, web searches, etc.

In this thesis we will consider mainly technical data. For our chosen one-minute intervals,
technical data is easily available and we use the API of Binance to collect it [108].
Fundamental data is also broadly available on popular sites (e.g. the Block explorer
[109]), however the granularity of it is too coarse. This site provides the data daily, so
heavy interpolation would have to be applied to fit the granularity of the technical data.
Therefore fundamental data is not used at all in this thesis.

Sentiment data has been shown to be relatively powerful for price prediction (Sections
2.1.5 and 2.2.3), and while text sentiment analysis tools are widely and freely available,
the aggregation of relevant historic news or Tweets is very time-consuming and expensive.
So despite sentiment data being potentially useful, we will also not use it.

We will however investigate the claim, that as a currency, Bitcoin represents the general
mood about and acceptance of cryptocurrencies. Because it is still the most popular
cryptocurrency in market capitalization as of January 2019 [57], Bitcoin is said to have
influence on other cryptocurrencies. If that claim is true, the Bitcoin price has an inherent
sentiment value for other cryptocurrencies. To examine this statement, we will include
the Bitcoin closing price in our data and see if the predictions improve compared to not
including it.

The amount of data is of essence to any machine learning problem. Having a large number
of training samples is beneficial to the training process. As a range for our data we chose
August 2017 to December 2018. This range was chosen both out of convenience, as it
was the earliest available data on Binance, and because we wanted recent historic price
data, which may depict the current situation more accurately than older data. Together
with the one-minute intervals this results in roughly 705 000 data samples.

All in all, the following features were selected: open, high, low, close, volume of Ethereum
as technical data and optionally the Bitcoin closing price data with supposed inherent
sentiment value. Other technical data, such as number of trades, and the fundamental
data were discarded and (other) sentiment data was not fetched. Every data sample
contains values for all the selected features. The target generation process is shown in
the next section.
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3.3 Target
At this point it is still unclear what output we want our neural network to produce. In
supervised learning the training process consists of providing the model with input/output
pairs and inferring a function that best maps this input data to the given output data.
The input data has already been explained in the last section. The output, or target,
will be generated from this input data. There are several approaches to take, reducing
the problem to either a regression or a classification problem.

The first and possibly most straightforward approach is to define the closing price in n

time steps as target and try to predict it directly. This regression approach is easy to
calculate. However, there are other ways that work as well. Another simple one is to
generate a target which indicates the direction of the price, i.e. if the price is going to rise
or fall in the future. This target reduces the problem to a binary classification problem.

The idea is to test if some targets perform better than others for this problem and if yes,
which ones they are. The targets are defined and created dynamically. The neural network
models are then dynamically altered, so that their output layer accommodates these
targets and has the right amount of output nodes, i.e. one output node for regression
and two (or more) for classification. Four di�erent targets are tested, including the two
briefly mentioned above. They are listed below, briefly explained, possible advantages and
drawbacks are discussed and finally, we describe how a trading signal can be generated
from them. We will henceforth refer to them by these given names.

• Binary classification
This target represents the direction of the price. The idea is to have the network
predict two di�erent classes, namely whether the price is rising or falling in n time
steps. These classes can be directly translated into the trading signals buy and sell.
This results in a simple prediction for the neural network with just two possible
outcomes, producing a rather high prediction accuracy, since random guessing
already has a 50% chance of being correct. Even though there is no hold signal, this
is obviously accounted for because buy amounts to hold when one already holds the
asset, while sell amounts to hold when one does not hold it. What this target fails
to achieve, however, is to incorporate a trading fee, because even for price jumps
smaller than the fee, the target would recommend a buy or sell.
For generating this target the price is shifted n time steps and a boolean function
is applied. For a given time m, the target will be 0 if the price at time m + n is
smaller (=sell) or 1 if it is bigger (=buy) than the price at time m.

• Regression of raw price
With this target, the network tries to predict the (closing) price in n time steps
directly. To generate a trading signal, the price prediction merely needs to be
compared to the current price. To incorporate fees or reduce the number of trades,
a certain threshold can be defined. If the change is smaller than the threshold, the
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3.3. Target

Figure 3.1: Illustration of best strategy target generation for some points in time
tm, tn, to, tp, each representing one of the four main cases. The fifth case happens at the
end of the data: if the price change is never larger than the fee, then the decision is to
hold.

trading signal hold is produced, otherwise buy or sell is produced depending on
whether the price rises or falls.

For generating this target the price is shifted n time steps. For a given time m, the
target will be the price at time m + n.

• Regression of relative price change

This target is similar to the last one, but the network tries to predict the relative
price change in n time steps instead of the price directly. For generating this target
the relative price change is calculated and then shifted n time steps.

• Best strategy classification

For this target, at each time step the best trading decision for a given fee is
calculated (buy, hold or sell) and assigned as either 0, 1 or 2 respectively. The
network tries to predict these best trading decisions at each point in time. This
makes it easy to incorporate trading fees. In this model however, the percentage
of the right predictions the model makes is not the exact accuracy, because if the
(crypto) asset is held, buy and hold amount to the same, whereas if the asset is not
held, sell and hold amount to the same operation.

To generate this target the (training) data is analyzed as follows. For every data
record it is checked whether the price first goes above the current price plus the fee
or below the current price minus the fee. If none applies, e.g. at the end of the
data, the decision is hold. If it is higher and there is no smaller price between the
current price and it, then the decision is buy. If a smaller price is in-between, it
is hold. The same works analogous for sell. Figure 3.1 illustrates this procedure,
Algorithm 3.1 demonstrates in detail how the calculation works for one price.
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Algorithm 3.1: Function that generates the best trading signal for a price,
called on every price, see Figure 3.1.

Input : price p at time t and a list of all prices priceList

Returns : best trading signal at time t

1 for every price q in priceList between p and priceList.length do
2 if q > p * (1+fee) then
3 for every price r in priceList between p and q do
4 if r < p then
5 return HOLD;
6 end
7 return BUY;
8 end
9 else if q < p * (1-fee) then

10 for every price r in priceList between p and q do
11 if r > p then
12 return HOLD;
13 end
14 return SELL;
15 end
16 else
17 continue;
18 end
19 end
20 return HOLD;

3.4 Preprocessing
The feature values themselves generally span over various di�erent ranges. Preprocessing
the data is an essential step to scale the input data to a common range that is not
larger than the neural network parameters. This helps to improve the learning of neural
networks [83]. The tool should make the integration of new preprocessing techniques
into the workflow simple. We implemented the following preprocessing techniques in the
software and experimented with them, to see how they impact on the performance of the
neural networks.

The first normalization decision that can be taken in this tool is whether or not to
transform the input data to the percentage change with regard to the immediate previous
value. Only suitable data is transformed here, since this method on its own cannot deal
with zero values, like the trading volume. The calculation for a transformed value x

Õ
i at

time i is as follows.

x
Õ
i = xi

xi≠1
≠ 1 (3.1)
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The second step is to decide on one of following three further normalization techniques.
This normalization is then performed on all values for every feature individually, regardless
of the previous step. These scaling techniques are commonly implemented in machine
learning libraries (e.g. scikit-learn [82]).

• Min-Max scaling
Every feature is scaled to a common range between a and b, e.g. to be between ≠1
and 1.

x
Õ = x ≠ min(x)

max(x) ≠ min(x) ú (b ≠ a) + a (3.2)

• Standard scaling
Every feature is scaled to have a mean of 0 and a variance of 1.

x
Õ = x ≠ x

‡x
(3.3)

• Robust scaling
Every features is scaled to the interquartile range, i.e. to be between the first and
third quartile, in a fashion analogous to the first method. This is method of scaling
is more robust to outliers.

x
Õ = x ≠ Q1(x)

Q3(x) ≠ Q1(x) (3.4)

The combination of these two steps results in six possible ways to preprocess the data.
We test these combinations at a later step to see, if they impact the performance.

3.5 Neural networks and training
To measure the performance of di�erent neural network models, an important requirement
for the software tool is to make the creation of new neural networks and their integration
with the di�erent targets and preprocessing techniques simple and straightforward. To
achieve this, the output layer is dynamically adapted depending on the used target. The
regression targets have one output node, while the classification targets have two output
nodes for the binary target or three output nodes for the best strategy target.

Three models are then created for further evaluation. All of them are LSTM-based neural
networks, with one of them being a mixture of LSTM and CNN. The networks all have
dropout after the LSTM layer to prevent overfitting. After the LSTM and dropout layer
there is a batch normalization layer, which normalizes the data within batches to speed
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up training [110]. After these layers, there is one dense (or fully connected) layer followed
by an output layer.

A time window (or sequence length) of 200 was chosen. The inputs are fed in batches
of 64. The activation function of the LSTM is the tanh function, as shown in Section
2.3.5. For the output layer a linear (for regression targets) or a softmax (for classifcation
targets) activation function is used. The architecture of these models is as follows and
can be seen in Figure 3.2.

• The first neural network model used is a rather basic one. It consists of one LSTM
layer with 128 units, followed by a dropout layer and a batch normalization layer.
Afterwards there is a dense layer with 32 nodes and a rectifier activation function
as well as an output layer with one, two or three nodes, depending on the target.
The second and the third model expand on this architecture.

• The second neural network consists of an LSTM layer with 128 units, with dropout
and batch normalization repeated three times. This is followed by a dense layer
with 32 nodes and a rectifier activation function and the output layer.

• The third model adds a one-dimensional convolution layer with kernel size 3 and a
rectifier activation function. This is followed by a one-dimensional max pooling
layer with a pooling size of 4. After this, the model consists of an LSTM layer with
128 units, dropout and batch normalization. Finally, there is a dense layer with
64 units and a leaky rectifier activation function (f(x) = max(x, 0.001x)) and the
output layer.

There is no definitive best neural network architecture for a problem, nor are there
final rules for constructing one. The models are usually created intuitively and by
experimenting. We created the first model to be a minimalist LSTM network. Based on
this model, we created several others, each altering one aspect, such as the number of
layers, adding convolution, changing the number of nodes, etc. We did some brief testing
on these models and selected two of them (model 2 and 3) for further evaluation.

These models are trained using the supplied, preprocessed data on a target. As a
cost function, the mean squared error (MSE) is used in regression and the categorical
crossentropy for classification. The training happens through backpropagation using an
optimization algorithm called Adam [111]. This method keeps an adaptive learning rate
for every weight and is an improvement over conventional gradient descent.

Only a certain amount of the data is used for training, in our case 95%. The rest is
used for validation and simulation. The neural networks are trained for 10 epochs or
more. The idea is to save the weights of the model after every epoch. This is useful for
reconstructing the models at any training stage later on and to evaluate the performance
of every processing step, using the measure defined in the next section.
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Figure 3.2: Architecture of the three di�erent models used.
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3.6 Performance measurement and testing
In Section 2.4 we already gave an overview on how to measure the performance of a
neural network. The cost function is used for backpropagation and is a measure for
neural networks. This cost function can vary and is usually di�erent for classification and
regression problems. In our case, we have targets for both classification and regression.
In regression we use the MSE as cost function, in classification we use the categorical
crossentropy. They are calculated as follows:

• Mean squared error (MSE):

J(w, b) = 1
2m

mÿ

i=1

A

(y(i) ≠ ŷ
(i))2

B

(3.5)

where y
(i) is the value of the label of the i

th input sample and ŷ
(i) the predicted

output value.

• Categorical crossentropy:

J(w, b) = ≠ 1
m

mÿ

i=1

A

y
(i) log ŷ

(i)
B

(3.6)

where y
(i) is the label of the i

th input sample, a vector of size C and C is the
number of di�erent categories. y

(i) consist of only 0s except for the value at the
location of the category that it actually is, where the value is 1. ŷ

(i) denotes the
predicted output vector of size C, containing the probabilities that the output is of
the respective category.

The MSE is the average squared di�erence between the prediction and the actual label,
while categorical crossentropy is a measure of how much the predicted probabilities for
each class and the actual class di�er. In the first case the output y

(i) and the prediction
ŷ

(i) are scalar values, in the second case they are vectors. Using MSE for classification
problems or categorical crossentropy for regression makes only little sense. Another
performance measure that works only for classification is accuracy, where the percentage
of the correctly predicted cases is calculated. So, even though these are common measures
of performance for neural networks on their own and are useful for training, we want to
introduce another metric to evaluate and compare our neural networks despite having
di�erent targets.

This measure works as follows. For every data point in the validation data, the trained
model is used to predict its target. Afterwards, a trading signal (buy, hold or sell) is
generated from this prediction. The simulation starts with a value of 100 US dollars and
will simulate trading based on the trading signals at each time step. For every trade that
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is executed, a fee is deducted from the simulation value. At the end, the simulation will
have a value which is then compared to the actual price change of the cryptocurrency.
Despite being able to compare the performance of our various models with di�erent
targets, this metric has the added benefit of seeing the real life viability for this form of
automated trading. Evaluating a model intended for trading purposes by profit was also
suggested by White [105].

The following two di�erent outcomes are desirable when evaluating a model in such a
simulation, ideally both occurring at the same time.

• Outperforming the price development.

• Achieving a positive simulation outcome, i.e. more than 100 US dollars.

Achieving at least one of these outcomes at all times is desirable. However, the simulations
are carried out over periods of time where the Ethereum price moves upwards, downwards
or stays the same. It might be easier to outperform the price when the price drops
immensely and it might be easier to achieve a positive simulation outcome when the
price increases significantly.

Since our work is a simulation, assumptions and simplifications have to be made. The
data records we used are in one-minute intervals, so there are no values in-between,
which is obviously inaccurate. Trades can be carried out at any time and there is a price
movement within one minute. In the simulation, every trade is carried out using the
currently latest closing price. Furthermore every trade order is filled immediately at that
price, i.e. it cannot happen that an order is not filled. This is another inaccuracy, as
there can be trades that are filled after some delay, not at all or that buys (sells) are
only filled at a higher (lower) price than the last market price. Finally, the simulation
does not take into account any impact its own trades might have on the market.
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CHAPTER 4
Implementation

In this chapter we present the technical details on how the design of Chapter 3 was
implemented in code. In Section 4.1 we briefly go over the requirements for the technologies
used in our software, which suitable technologies are available for the task and which
technology stack we chose based on these requirements. Section 4.2 focuses on the
program architecture. Section 4.3 goes over the computational e�ort and the hardware
setup used to cope with it.

4.1 Selection of technologies
We have described the models of artificial neural networks in Section 2.3. As they consist
mostly of matrix operations, implementing simple neural networks in a naive way may
appear straightforward. The complexity of more advanced neural networks such as
LSTM networks or improved backpropagation makes implementing them significantly
harder, especially if the computation should be done in an e�cient way on graphics cards.
Thankfully, there are numerous di�erent frameworks for deep learning which implement
di�erent concepts very e�ciently and make the construction of neural networks simple.
In the next sections we will briefly go over our requirements for these frameworks and
other technologies, compare them and list the ones we chose for implementing our tool.

4.1.1 Requirements

The most important requirements we have for our deep learning framework are, that
it has implementations for the concepts we intend to use. These concepts are LSTM,
convolution and pooling (CNN), dropout and, of course, standard, fully connected neural
network layers with di�erent activation functions as well as e�cient backpropagation
algorithms. These implementations have to be as e�cient as possible, in order to deal with
our dataset. The framework should be easy to use and have a large developer community
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behind it, for support reasons, e.g. for finding helpful comments on a framework-specific
problem online. While implementing the di�erent normalization approaches ourselves is
definitely possible, existing and e�cient implementations are helpful. All other employed
technologies should be easy to integrate with this framework.

4.1.2 Comparison of available technologies

At the time of writing this thesis, most deep learning frameworks use Python as a
programming language. We will list some popular ones and briefly go over the advantages
and disadvantages for each one [112][113]. Note, however, that this is a very subjective
matter, where opinions di�er significantly. There exist also many more frameworks than
the ones listed below, which we did not consider for space reasons.

• TensorFlow [114]:
This framework was developed by Google and released under open-source license in
2015. It is the most popular deep learning framework (see Figure 4.1) with a large
community as well as companies behind it. It supports all relevant kinds of neural
network components, training algorithms and so on. In TensorFlow, developers
can build computational graphs in Python, which are then e�ciently executed as
native code using CUDA for GPU computations.

• PyTorch [115]:
This open-source framework, backed by Facebook, is the successor of the library
Torch. There are also large companies that use it and the community behind it is
growing, but nowhere near as large as for TensorFlow.

• Ca�e [116]:
Ca�e was developed at Berkley University. Its successor Ca�e2 was integrated in
PyTorch in 2018.

• Theano [117]:
As one of the earlier Python based open-source deep learning frameworks, Theano
was popular following the years after its initial release in 2007. It is however not in
active development anymore, which is why we have decided against using it.

• MXNET [118]:
This Apache open-source project is allegedly scalable and performant, but not very
popular in the deep learning community.

• Microsoft Cognitive Toolkit (CNTK) [119]:
This is an open-source framework by Microsoft. It supposedly has good performance
and e�ciency, but a smaller community behind it.
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Figure 4.1: Popularity of deep learning frameworks measured in stars given to each
project on GitHub; Je� Hale, Deep Learning Framework Power Scores 2018 [112].

• Deeplearning4j (DL4J) [120]:

This framework is based on the programming language Java and runs in the Java
virtual machine (JVM). It supports di�erent neural network types and can interact
with TensorFlow and Keras. However, the community behind it is not very large.

• Keras [121]:

Keras is a Python library that uses other deep learning frameworks as backend.
Choices for backend include either TensorFlow, Theano or the Microsoft Cognitive
Toolkit. With Keras, neural networks can be constructed in a simple and user-
friendly fashion and it helps to reduce the lines of code.

As most of these frameworks o�er implementations for every neural network component
we need and all claim to be fast and e�cient, we settled for one that is user-friendly and
has a high popularity for community support. The popularity of the di�erent frameworks
measured in GitHub stars is shown in Figure 4.1 [112].

4.1.3 Used technologies

Based on our requirements, we ended up choosing Keras with TensorFlow as backend
for our deep learning framework. Therefore Python is the programming language of our
choice and we selected the rest of the technologies to fit.
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For preprocessing we use scikit-learn [82], which is a Python package for machine learning.
For other tasks we chose appropriate Python packages. The following technologies were
used to build the prognosis tool:

• Python 3.6.6 as programming language.

• TensorFlow 1.12 GPU (with Keras) to build and train the neural networks,
using CUDA 9 and cuDNN 7 for hardware acceleration.

• scikit-learn, a python package for data preprocessing.

• pandas, a python package for data representation and handling [122].

• Several other python packages such as numpy, joblib, requests, websockets
and asyncio for tasks such as fetching the historical data from Binance’s public
API.

4.2 Program architecture
Our tool was designed with modularity in mind, to make the evaluation of various models
and preprocessing techniques simple. The di�erent tasks the tool has to carry out and the
general workflow are as follows. First the data is fetched from the API and stored. This
data is then preprocessed and a neural network is trained on it. Afterwards, a simulation
is carried out to evaluate its performance. The target, model and preprocessing techniques
are selected beforehand in a run configuration along with some other parameters. Via an
automation, many di�erent parameter combinations can be tested automatically. We
outlined this workflow in Figure 4.2 and will describe the steps in detail over the next
few sections.

4.2.1 Data fetching
This module of the tool is used for fetching the historical data. It uses the Python library
requests [123] to send http requests to the Binance public API [108]. The user provides a
symbol, for example “BTCUSDT” – the price of Bitcoin (BTC) in US dollars (or rather
a cryptocurrency tied one-to-one to the dollar called Tether), and the module will fetch
historical data for that symbol.

By default, the module will fetch this data for a time range between the current date
and the earliest possible date of the Binance API, which is August 2017, in one-minute
intervals. These parameters can be tweaked easily to fetch di�erent data. The data that
is gathered for every minute contains many di�erent fields: open time, open, high, low,
close, volume, close time, quote asset volume, number of trades, taker buy base asset
volume and taker buy quote asset volume. As Binance limits the number of data points
that can be fetched per request to 1,000, several requests are made and the data is then
combined locally.
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Figure 4.2: Visualization of the workflow of the implemented software.

The requests are made in a ways so that the API limit for the maximum amount of
requests per second is not exceeded. The fetched and combined data is sanity checked for
holes or other irregularities. For instance, we check if the data points are really exactly
one minute apart, and fix them if necessary. The data is saved as a comma separated
value (csv) file. With the one-minute intervals and the time range we used, these files are
roughly 60 MB of size. Please note that we did discard irrelevant fields to save space.
An irrelevant field is for instance the second time field, because the two time values will
always be one minute apart.

This process of fetching the whole history of one symbol is not computationally expensive
and takes only a few minutes to complete. This module of the software can be executed
completely independently from the rest of the program, since the data is persistently
saved and can be accessed later on.

4.2.2 Data handling

This module loads the saved csv file fetched by the previous module and is responsible
for three steps. It extracts features from the data, generates a target and normalizes the
data. The features are extracted by dropping the fields that are deemed unnecessary and,
optionally, by adding the Bitcoin closing price, leaving us with the features which were
selected in Section 3.2.

As there are di�erent targets, there are di�erent target generators. To make the generation
of targets as modular as possible, we used the inheritance mechanism of object oriented
programming. We defined an abstract superclass with the necessary methods for creating
the target. These methods are implemented in the various subclasses, one for each
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Figure 4.3: Class diagram of the target generation inheritance.

target. With this approach we can use any target generator interchangeably instead of
the superclass and constructing new target generators becomes easy. For creating a new
target, that target generation mechanism merely has to be implemented as a subclass of
that superclass and is ready to be used. The architecture is illustrated in Figure 4.3. We
described the di�erent targets in Section 3.3.

The first step of the normalization explained in Section 3.4 is implemented as a simple
function calculating the percentage change of the value. The second part of the nor-
malization (or scaling) was built similarly to the target generation. Here we also use
inheritance to define which methods we need for normalizing in an abstract superclass.
These methods are implemented in every subclass. Analogous to target generation, this
makes adding new ways of normalization simple. The architecture of this component is
shown in Figure 4.4.

As seen in the figure, we require two di�erent normalization methods. The first is for
scaling the training set, the second for scaling the validation set. This is necessary,
because we need to scale the validation data exactly like the training data. Imagine a
feature of the training data that has a certain range and is scaled to be between 0 and 1.
Now the maximum value of that feature in the training data corresponds to 1 and the
minimum to 0. This feature might have a di�erent range in the validation data, and the
maximum (minimum) might be bigger (smaller) than in the training data. Yet, to avoid
biased results, it has to be scaled exactly to the same interval as the training data, so
that the maximum (minimum) of the validation data might be scaled to a value larger
than 1 (smaller than 0). The configuration of the normalization of the training set is
therefore saved and reused when normalizing the validation set.

4.2.3 Neural networks, training and simulation

To make the creation of new neural networks simple, we yet again used a similar
inheritance architecture as with the target generation and normalization. The neural
networks themselves are constructed using Keras’ Sequential model API. This is a very
convenient way to construct neural networks, as the layers can be added one by one along
with their parameters, such as nodes, activation functions and so on. Depending on the
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4.2. Program architecture

Figure 4.4: Class diagram of the normalization inheritance.

Figure 4.5: Class diagram of the neural network inheritance.

target, we need one output node (regression) or two to three (classification). Therefore,
the output layer along with its activation function is created dynamically, according to
the target that was defined earlier.

The superclass provides methods for training and prediction, which are used on the model
that is set automatically according to the subclass. The train method uses the supplied
data to train the neural network, whereas the predict method is used to predict outputs
with a trained network, e.g. for simulation. This architecture is shown in Figure 4.5, the
structure of the neural networks was explained in Section 2.3.

Now that we have modular target generation, preprocessing and neural networks, we need
a way to combine them. Before starting the training with this software, the user defines
a run configuration. In this configuration, the user simply selects the target generator,
preprocessing combination and neural network of his choice along with other parameters
such as the number of epochs, the batch size, etc.

Afterwards the user can start the main component of the tool with the parameter “train”
in order to start the training process. The preprocessed data is fed to the neural network,
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which trains for the provided number of epochs. The weights of the trained models are
saved after every epoch so that they can be reused for further training or for simulation.

Running the same component with the parameter “simulate” results in starting a sim-
ulation. For this, the same run configuration as with the training process is used. An
epoch number can be provided to use a specific training state of the neural network,
otherwise the latest model is used. The weights are loaded and the simulation starts. The
simulation is performed in a function, where according to the prediction of the neural
network, the corresponding trading action is selected. This is also done dynamically
according to the target and does not have to be set by the user. The simulation starts
on the validation data, which was not used for testing, with a value of 100 US dollars.
The simulation goes over every sample and carries out the trading decision. Buying or
selling is done at the price currently gone over by the simulation and a fee set in the
configuration is deducted. Finally the simulation is visualized in a graph.

4.2.4 Test automation

In order to test several di�erent configurations in a convenient way, we required test
automation. In this part of the software, a range of values for all the di�erent parameters in
a run configuration can be defined, and all possible combinations are tested automatically.
The software trains and tests the model for each configuration and saves the results for
every epoch along with the run configuration settings. Furthermore, we defined an API,
that allows a socket connection with another program. Through this API, the software
can be supplied with (real) data and sends back a trading signal, which the other program
can process further.

4.3 Hardware and computational e�ort

The computational e�ort for machine learning and specifically for neural networks is
high. The increase of computational power is one of the reasons why neural networks
have become popular over the last years. Still, for models trained on a large amount of
training samples, the e�ort remains high.

Neural network calculations are mostly matrix operations, which is why graphics processing
units (GPUs) are usually far more e�cient than CPUs. As of now, most frameworks for
deep learning support nVidia’s CUDA API. The interface OpenCL, which for instance
AMD’s GPUs use, is usually not supported. This is the reason why mainly nVidia GPUs
are used for deep learning.

Carrying out the calculation on the GPU and utilizing CUDA enables us to use the faster
LSTM implementation CuDNNLSTM, based on nVidia’s cuDNN library. This decreased
the training time from around 1 hour per epoch to around 5 minutes per epoch for the
simplest neural network (model 1) and our number of training samples.
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The evaluation done in this thesis was performed on a single consumer workstation. To
cope with the computational e�ort, the following hardware setup was used.

• GPUs: 2 ◊ nVidia GeForce GTX 1080

• CPU: AMD Ryzen Threadripper 1900X, 8-Cores with 3.8 GHz each

• RAM: 32GB DDR4 RAM

A dual GPU setup was chosen, so that two models can be trained in parallel at the
same time. Despite the use of CuDNNLSTM and this hardware setup, which was rather
high end for a consumer workstation at the time of writing this thesis, along with other
measures taken to reduce the workload (see Section 5.3) the experimentation required a
duration of around 2-3 weeks computing non-stop, 24 hours a day.
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CHAPTER 5
Evaluation

In this chapter we discuss the performed experiments and their results. The goal of the
evaluation is to see if neural networks can predict profitable trading signals for Ethereum.
We test di�erent preprocessing methods, neural network model and target combinations
in order to compare their performance among each other as well as to state-of-the-art
solutions. Section 5.1 describes the setup of the experimentation. Section 5.2 introduces
three di�erent sectors where tests are carried out. In Section 5.3 we go over the possible
combinations and the approach for reducing the large search space. Section 5.4 shows
how the best preprocessing combination was found and chosen, while Section 5.5 goes
over the performance of the di�erent models. Section 5.6 lists and discusses the main
results, while Section 5.7 shows the results when training over more epochs. To see all
results in detail along with an explanation for the used abbreviations in tables, we refer
the reader to the appendix.

5.1 Setup
We carry all experimentation out on historical data. To briefly recapitulate, this historical
data consist of the price of Ethereum (ETH) in US dollar (USD) and its trading volume
on the cryptocurrency exchange Binance. The data ranges from August 2017 to December
2018 and is in one-minute intervals. This results in about 705 000 data records. In the
experiments, we consider the following features.

• o: Opening price of interval

• h: Highest price of interval

• l: Lowest price of interval

• c: Closing price of interval
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• v: Trading volume of interval

• Optional: Bitcoin (BTC) closing price as “sentiment” value

This data are used for training and simulation. We will see how the simulation based on the
predictions of all the trained models performs in relation to the actual price development.
The number of trades a model carries out in the simulation is also closely examined. Any
model which has not more than one trade will be regarded as a failure. If all epochs
of a preprocessing and model combination are such failures, the whole combination is
disregarded. We use the measured performance to find the best preprocessing model
combinations or at least the ones that learn quickly while still providing good results.

5.2 Sectors
The models were trained on 95% of the data, while the rest of the data was used for
validation and simulation. The training was carried out in 10 epochs each, the trained
model after every epoch was saved. Every saved model was then used to simulate trading
on the validation data, i.e. the remaining 5% of the data. The model provides a trading
decision for every minute of the test data. It is assumed that every trading decision is
carried out without delay at market price, i.e. the current closing price. For every trade,
a fee of 0.075% is deducted from the simulation value, which starts at 100 USD.

The models might perform di�erently depending on the market situation of the testing
data, i.e. its performance di�ers in a period where the ETH price is rising rapidly
(bullish) compared to when the price is dropping (bearish) or stays more or less the same
(stagnating). To make the results more conclusive, the experiments were carried out three
times. Of the historic price data, three di�erent 5% regions or sectors are selected. The
price progression of ETH in USD is shown in Figure 5.1 along with these sectors. All
of the three di�erent 5% data sectors were used as validation data, while the remaining
95% of the data was used for training. In sector one the price stays more or less the
same (-8%). In the second sector, the price drops to about 45% and in the third the
price increases to 186%. In every sector the same combinations are separately trained
and tested.

5.3 Combinations and reducing the search space
All possible experiment configurations that we evaluate include the combinations of
all four di�erent targets listed in Section 3.3, all six preprocessing combinations listed
in Section 3.4, the three di�erent neural network models listed in Section 3.5 and two
possibilities for either including or leaving out the BTC closing price as “sentiment” value.

Hence, this search space is of considerable size and every training run is computationally
expensive. Training every combination on all three sectors, ten epochs each would be
equal to 4320 runs. To make this workload manageable the experiments were structured
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5.4. Evaluation of targets and preprocessing

Figure 5.1: ETH price in USD on Binance [108], sectors 1-3 (right to left).

as follows. The full set of combinations was only tested with the first model in sector
one, in order to find the most successful ones. Combinations that failed according to the
definition above were disregarded for the following experiments to reduce the vast search
space to the more promising combinations. The most successful combinations for each
target were then tested on the other neural network models. All results can be seen in
the appendix.

As we already discussed, a simulation was performed for every preprocessing model
combination after every epoch. One of these simulations can be seen in Figure 5.2. The
simulation value and the ETH price progression after that period of time are measured
and their di�erence is calculated at the end. This di�erence is written in the tables that
are presented in the following sections as perf, while the end value would be written as
value.

5.4 Evaluation of targets and preprocessing

The structure of the neural network models is presented in Section 3.5 and Figure 3.2.
To sum it up, the first model consists of one LSTM layer, followed by a dropout layer, a
normalization layer, a dense layer with 32 nodes and an output layer with one, two or
three nodes, depending on the target.
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Figure 5.2: A single simulation for sector 1: The di�erence between the value of the
simulation and the actual price progression of ETH is used to measure the performance
of the models, here depicted in red.

We tested this model most thoroughly and used it to narrow down on the preprocessing
combinations that performed best within 10 epochs. Every combination was tested for
the first sector, which is equal to 480 test runs. The following combinations failed. The
regression target on the relative price change was unsuccessful in every combination, as
all trained models traded not even once in the simulation, with one exception where it
traded twice in two epochs. Using the Min-Max normalization in combination with the
binary target also resulted in failures. Similarly, any combination using the Min-Max
normalization in combination with converting the raw data to the percentage change of
its immediate predecessor failed. All other combinations with the Min-Max normalization
produced far worse results than the other normalization techniques. Adding the Bitcoin
price to the input as sentiment value did not increase the performance in most cases but
rather seemed to have a negative impact. This is most likely either due to the fact that
when using the Bitcoin price, we introduce an additional input feature without having
more training samples or that the Bitcoin price is simply not influential.

The most promising target was by far the best strategy target. In the time frame of the
first sector, the Ethereum price sank to roughly 92% of its initial value or by around -8%.
Most of the combinations outperformed that -8% with some being even positive in most
of the epochs, despite performing several trades and deducting a fee of 0.075% each time.
Those results are shown in Table 5.1. A more detailed explanation of the terminology
used within the tables can be found in Section 7.1.
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Table 5.1: Results using the best strategy target for model 1 in sector 1: # stands for
the number of trades carried out in the simulation, while perf shows how the simulation
performed in comparison to the ETH price (shown in Figure 5.2). The ETH price sank
to 92.056% in that time, so if a model increased its value to, for instance, 106.107%, a
perf of 14.051 is noted down as the performance di�erence between the simulation value
of 106.107 and the ETH performance of 92.056.

Best strategy target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

St
an

da
rd

0 7.944 0 7.944 125 16.242 104 -3.224
1 -0.359 1 10.505 77 -1.848 515 -34.359

11 -3.807 18 9.126 7 1.849 597 -42.444
0 7.944 291 -17.673 52 2.399 200 8.835
4 -1.717 35 14.051 219 9.270 187 -4.387

366 -15.093 1 -1.977 142 16.820 287 -8.434
68 -1.063 19 -5.115 2 8.242 49 -4.608
35 -4.771 119 -8.989 192 -4.590 6 6.254
1 6.353 15 -2.634 264 -14.881 183 -19.547
0 7.944 5 -3.488 48 6.208 51 -7.012

R
ob

us
t

1 1.489 0 7.944 30 5.537 51 -7.560
53 -7.747 0 7.944 2 6.733 40 4.261
0 7.944 0 7.944 21 -8.937 297 -14.154

649 -37.981 0 7.944 26 1.447 105 -12.694
437 -31.837 1 -1.546 3 -2.434 304 -11.942

2 15.074 1 1.278 15 -1.909 97 -12.233
0 7.944 3 31.192 31 -7.166 62 -3.158

35 6.898 1 6.353 0 7.944 38 4.430
5 1.448 291 -18.217 20 6.113 3 -0.426
7 2.174 101 -9.353 21 15.357 0 7.944
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In all further experiments, only combinations consisting of the best strategy target as
well as either the Standard or the Robust Normalizer were considered, resulting in eight
di�erent preprocessing combinations. This reduces the required number of test runs to
just 640.

5.5 Evaluation of the neural network models

Even though we tested not using the percentage change of the preceding value for every
model in every sector, this turned out to consistently produce unsatisfactory results, and
will not be shown here. Table 5.2 shows the results for the remaining four preprocessing
combinations for every model and every sector, averaged over all epochs. Note that we
now show the average value the simulation achieved, not the di�erence to the actual
ETH price. We go over these results in the next three subsections.

5.5.1 Model 1

For the remaining four combinations, the model had a similar average performance to
the price in sector 1, being slightly below it. In the second sector the price sunk to
around 45%. In this market, the model outperformed the price on average, even if just
slightly. In the third sector the price rose to approximately 186%. Here the model not
only underperformed the price, but was negative to the point of losing money in an
otherwise very bullish market.

5.5.2 Model 2

The second neural network model is similar to the first one but with more layers. It
consists of 3 LSTM layers, each followed by dropout and normalization layers. Then
follows a dense layer which is followed by an output layer. This model performed worst
out of the three models, performing on average worse than the price in every sector. It
had a very large number of trades. While in sector 1 there were at least a handful of
epochs that outperformed the price movement, namely when not using the BTC closing
price, it performed badly in sectors 2 and 3 to the point of almost losing all money
despite sector 3 being very bullish. The reason for this bad performance might be due to
the large structure of the network and the in comparison relatively small training set
(around 670,000 samples).

5.5.3 Model 3

The third neural network model has a similar topology to the first one but has additional
convolution and max pooling layers on the input side. Out of all models, this one
performed by far the best. On average, it outperformed the price in sector 1 and 2. In
sector 3, it did worse than the price on average, but still remained positive.

70



5.5. Evaluation of the neural network models
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5. Evaluation

Table 5.3: Number of trades and simulation value the models achieved on average over
all sectors out of the initial value of 100 USD.

Best strategy target, %
no sentiment sentiment

avg. # avg. value avg. # avg. value
Model 1

Standard 2220.3 28.252 2262.4 28.775

Robust 2645.8 13.699 2670.2 19.947

Model 2

Standard 6502.9 1.463 11441 0.182

Robust 6914.1 0.825 11396.9 0.168

Model 3

Standard 91.4 105.344 99.3 90.513

Robust 33.2 94.685 75.3 102.070

5.6 Performance

We finally regard all three sectors of the ETH price. Recall that the price in the first
sector sinks to 92%, in the second it drops to 45% and in the third it rises to 186%. If
one were to hold ETH in all three sectors, it would fall to about 76%. All three sectors
add up to about 73 days. Please note that the order of the sectors does obviously not
matter.

If we take the preprocessing and model combinations and take their average performance
over all epochs, in all sectors, we can see how the preprocessing and model combinations
would have performed when applying them over all three sectors. These results are shown
in Table 5.3. We can quickly see, that model 3 is by far the best. This can be explained
by the model’s convolutional and pooling layers, which compute features and reduce
the input dimensionality [124]. It outperforms the 76% of holding ETH over all three
sectors easily, even being positive overall in two configurations on average. The number
of trades is held at a rather low level in this model, so a di�erent fee would not have as
much impact as on models 1 and 2. While the best of the three models was rather clear,
the best preprocessing combination is not. There are two that performed rather well.
Interestingly enough, the Standard normalizer performed better without sentiment data,
while the Robust normalizer performed better with sentiment data.
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5.7. Training more epochs

5.7 Training more epochs

To make the computation of these results feasible, the number of epochs used in every
configuration was limited to 10. A major concern was that the performance increases
significantly only after significantly more training epochs. To test the performance with
regard to more epochs, the two most promising preprocessing techniques and model
combinations were used and trained for 150 epochs on all three sectors.

The performance, however, did not increase significantly. Sometimes the models would hit
snags and have zero trades after some epochs, but this behavior tends to be compensated
after one or more epochs, most likely due to the dropout layers which prevent overfitting.

5.8 Comparison to other methods

We already compared our approach with the buy and hold strategy in the last sections.
Model 1 and 2 performed worse than the buy and hold strategy, while model 3 performed
better, with an average di�erence of almost 30% of the starting value for the best
preprocessing combination.

Compared to the methods presented in Section 2.5, we used a more practical approach in
this thesis. Unlike in those papers, where mostly the accuracy or the MSE was used to
measure the performance, we used backtesting, i.e. the profit which was achieved when
simulating trading with the trained networks (as explained in Section 3.6). The accuracy
for the best strategy target, the classification target that was tested most thoroughly
is not entirely accurate. This is due to the fact, that if we hold Ethereum, the signals
buy and hold amount to the same trading outcome (hold), since we cannot buy more
Ethereum when our portfolio already consists of 100% Ethereum. Similarly, when holding
US dollar the signals sell and hold amount to the same trading outcome (hold). So the
accuracy of the predicted signals is not the same as the accuracy of the rightly carried
out trading actions.

Therefore we have two di�erent accuracies for our models. We managed to get around
38.35% accuracy for the predicted trading signals, which is around 5% higher than random
chance out of three choices. However, for the corrected accuracy, which represents the
amount of rightfully chosen trading actions, we managed to achieve around 61.57%.
This is also slightly higher than the 60.80% we managed to get when using the binary
classification target. The corrected accuracy is higher in most cases than for most papers
presented in Section 2.5, but we doubt that this comparison has substantial significance.

Note that using a trading fee in combination with high frequency trading had a big impact
on the simulation outcomes. So while models 1 and 2 did not perform well at all, they
still had comparable accuracies, only slightly below the third model. The problem is that
with fees a large number of trades has a big negative impact on the outcome. Simulations
without trading fees would result in large profits even with the simplest models and the
binary classification target. In particular, during one run, model 2 managed to generate
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a profit of around 254% with around 10,500 trades in the validation period using binary
classification. When applying fees, the simulation value got close to zero.

The paper Bitcoin Price Prediction Using Ensembles of Neural Networks [107] did backtest
their model and achieved a performance increase of about 85% over 50 days, compared
to a BTC price increase of a little over 75%, outperforming buy and hold by roughly
10%. With our best combination we outperformed buy and hold over all three sectors
(about 73 days) by 30%.
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CHAPTER 6
Summary

6.1 Conclusions

The aim of this thesis was to see if predicting trading signals of cryptocurrencies with
modern neural networks is possible and can result in a profitable trading strategy.
We collected 705,000 one-minute samples of historic price data of the cryptocurrency
Ethereum, ranging from August 2017 to December 2018. We evaluated three di�erent
neural networks, model 1 and 2 being LSTM networks and model 3 a hybrid of CNN and
LSTM. We used the open, high, low, close and volume of Ethereum along with optionally
the closing price of Bitcoin as features. We implemented 6 preprocessing combinations
and 4 di�erent targets, 2 for regression and 2 for classification.

We then set out to test these di�erent configurations. The training is dependent on the
target, using backpropagation with the Adam optimizer on either the MSE for regression
and categorical crossentropy for classification as loss functions. We used a 95% to 5%
training to validation split. The performance of the neural networks was measured by
backtesting the models on the validation data. In other words, we used the predicted
outcomes of the networks to generate trading decisions for every minute of the validation
data, and carried this decision out. Starting at 100 US dollar we then looked at the value
the simulation had in the end and compared it to the price development of Ethereum
during that time, i.e. the buy and hold strategy. For every simulated trade a fee of
0.075% was deducted. The simulated trades were always carried out immediately and
did not influence the market. We carried the simulation out independently over three
di�erent price sectors, one where the Ethereum price was rising, one where it was falling
and one where is was staying roughly the same.

In the evaluation part, we found the target that tries to predict the best trading decision for
each point in time to have the best performance and pinpointed the two best performing
preprocessing combinations. These were transforming the data to the percentage change
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of its predecessor and then applying either the standard or the robust normalizer. Utilizing
the Bitcoin closing price as additional feature produced inconclusive results, performing
slightly better on average when used in combination with the robust scaler and slightly
worse when used in combination with the standard normalizer, as compared to not using
the Bitcoin closing price at all.

Out of the three models, model 3 had the best performance. In the best configuration
and averaged over all epochs, the first one had around 28$ of the initial 100 US dollars
left after the simulation with an average of about 2220 trades over all three sectors. This
result is worse than the roughly 76$ achieved when using buy and hold over the same
period of time. The second model performed even worse, with only about 1.5$ of the
initial 100 US dollars left. The third model achieved a little over 105$ in that time in the
best configuration, with an average of 91.4 trades. Model 3 outperformed buy and hold
buy almost 30%. The reason for the good performance of model 3 is most likely because
of its convolution and pooling layers in the beginning, which compute basic features from
the data and reduce their dimensionality. This may also hint towards the features that
we used being in need of improvement.

The results point towards an answer, that, theoretically, by using neural networks to
predict trading signals for Ethereum in high frequency one-minute intervals, arbitrage
is possible to some degree and a slight profit or at least outperforming a buy and hold
strategy can be achieved, even when trading fees are present. It is still unclear if this
approach has real-world application and if by removing the simplifications assumed in
the simulation, a profit is still possible, e.g. when the trades are not carried out instantly
at the current market price or when trades actually have influence on the market.

6.2 Future work

Aside from testing the real-world application of the models presented in this thesis, there
are numerous other ways of extending this work. This can be done by either improving
the data or the model.

For improving the data, the most obvious step might be to use more data for training,
either from years further in the past or newer ones as new trading data becomes available
over time. Beside that, the data of other cryptocurrencies or even stocks could be used
for training the model. The model could also be tested on di�erent cryptocurrencies or
stocks, maybe to get insights into the synergy between these assets.

Other than the quantity of the training samples, the features can be improved as well.
An approach is to use other technical data, such as technical indicators. To boil down
the number of features to the most important ones, an approach such as the principle
component analysis might be useful [81].

Other than technical data, it is also interesting to see if fundamental data, such as current
hashrate or transaction fee of the cryptocurrency has an impact on the prediction. For
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this, a dataset with a granularity similar to the technical data would have to be acquired,
in order to avoid major interpolation.

Using sentiment data for price forecasting is a very promising approach that has been
experimented with to some degree recently. In particular, combining real sentiment data
of news, Twitter posts and so on with the technical data in a prediction seems very
promising to us. Tools for automated and well performing sentiment analysis are freely
available, but aggregating the appropriate raw data is both expensive and tedious.

Finally, improving the model is another pathway. Since the best performing model was a
relatively simple CNN LSTM hybrid neural network, it would make sense to experiment
with more complex or di�erent convolutions for the architecture of the neural network.
New RNN constructs such as gated recurrent units (GRUs) can be investigated as well
[125].

Also completely new approaches are possible, for example investigating if there are
arbitrage possibilities in the price di�erences between di�erent cryptocurrency exchanges.
Trying all these di�erent improvements and how they impact on the performance of
cryptocurrency price predictions with neural networks is certainly worthwhile being
pursued in the future.
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CHAPTER 7
Appendix

In this chapter a detailed explanation of the data tables and the abbreviations used is
given in Section 7.1. All results are listed in Section 7.2.

7.1 Explanation of the abbreviations used in the tables
All calculated results shown in tabular form are structured as follows. Their title refers
to one of the di�erent targets presented in Section 3.3 and their various preprocessing
combinations. “MinMax”, “Standard” and “Robust” refer to the di�erent data normal-
ization techniques presented in Section 3.4. “no %” and “%” refer to whether or not
the input data was changed to be the percentage values of their immediate predecessors.
“No sentiment” and “sentiment” refer to whether or not the Bitcoin price has been
added as additional feature representing an supposed inherent sentiment value for the
cryptocurrency market.

Every combination is evaluated over 10 epochs, listed vertically from first to last, each
with the number of trades (“#”) in the simulation of the model of that epoch and
the performance (“perf”) di�erence to how the Ethereum price actually performed
in percentage points (buy and hold strategy), a positive value meaning it performed
better than the price, a negative value meaning it performed worse. A simulation on a
preprocessing model combination at any epoch always starts with 100 USD. If it increases
its value to 105% while the ETH price in that time falls to 92%, the performance of this
preprocessing model combination at that specific epoch is marked down as 13% in the
table, i.e. the di�erence between the simulation value of 105% and the actual ETH price
development of 92%. Tables 5.2 and 5.3 show the average value (“avg value”) instead of
performance, which represents the value the simulation achieved.

The simulation is explained in 3.6. The number of trades and the performance are each
color coded to be able to compare the di�erent results at a glance. The colors for the
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number of trades range from red (no, very few trades) over white (medium amount of
trades) to blue (many trades). The colors for the performance range from red (bad
performance) over yellow (mediocre performance) to green (good performance).

7.2 All results
The Tables 7.1 to 7.4 are the raw results of all combinations tested with model 1 on
the first testing sector as explained in Section 5.2. Tables 7.5 and 7.6 show the results
for Sector 2 and 3 for the first model. Tables 7.7 to 7.9 show the results for the second
model. Tables 7.10 to 7.12 show the results for the third model.

Please recall that for in sector 1, the ETH price sank to roughly 92%, in sector 2 it sank
to roughly 45% and in sector 3 it increased to about 186%.
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7.2. All results

Table 7.1: Results model 1, sector 1, binary target

Binary target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

M
in

M
ax

0 7.922 0 7.922 0 7.922 0 7.922
0 7.922 0 7.922 0 7.922 0 7.922
0 7.922 0 7.922 0 7.922 0 7.922
0 7.922 0 7.922 0 7.922 0 7.922
0 7.922 0 7.922 0 7.922 0 7.922
0 7.922 0 7.922 0 7.922 0 7.922
0 7.922 0 7.922 0 7.922 0 7.922
0 7.922 0 7.922 0 7.922 0 7.922
0 7.922 0 7.922 0 7.922 0 7.922
0 7.922 0 7.922 0 7.922 0 7.922

St
an

da
rd

5156 -90.382 0 7.922 0 7.922 13142 -92.073
40 6.341 0 7.922 0 7.922 14746 -92.076
40 6.341 10 6.467 0 7.922 4084 -87.654

504 -23.927 2 7.799 0 7.922 9700 -92.020
594 -28.135 2 7.799 0 7.922 13168 -92.073
334 -14.323 2 7.799 0 7.922 13432 -92.074
446 -20.244 2 7.799 0 7.922 9470 -92.010
318 -12.586 2 7.799 0 7.922 13986 -92.075

0 7.922 2 7.799 0 7.922 14368 -92.076
0 7.922 2 7.799 0 7.922 12367 -92.070

R
ob

us
t

0 7.922 0 7.922 2 7.783 800 -39.264
132 6.018 0 7.922 0 7.922 13178 -92.072

0 7.922 0 7.922 0 7.922 5144 -90.030
286 -7.335 0 7.922 0 7.922 9493 -91.993
96 4.339 0 7.922 0 7.922 122 -3.212
70 7.236 0 7.922 0 7.922 0 7.922
0 7.922 0 7.922 0 7.922 0 7.922

78 3.409 0 7.922 0 7.922 0 7.922
6 7.154 0 7.922 0 7.922 10483 -92.039

396 -17.726 0 7.922 0 7.922 12 7.651
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Table 7.2: Results model 1, sector 1, Regression of raw price

Regression of raw price
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

M
in

M
ax

1523 -60.000 15 -1.041 1 -0.069 1 -0.069
1 -0.069 645 -36.215 1 -0.069 1 -0.069

13 -0.316 349 -21.626 1 -0.069 1 -0.069
51 -4.667 145 -8.829 1 -0.069 1 -0.069
3 -0.142 91 -10.262 1 -0.069 1 -0.069

13 -1.408 9 0.555 133 -7.978 1 -0.069
18 7.137 129 -12.723 59 -4.364 1 -0.069

2027 -68.343 133 -12.576 1 -0.069 1 -0.069
15558 -92.055 171 -14.193 1 -0.069 1 -0.069

3 -0.255 2401 -76.184 1 -0.069 1 -0.069

St
an

da
rd

115 3.761 2466 -76.363 5 -0.007 1 -0.069
2594 -79.330 1935 -66.494 113 -7.441 1 -0.069
962 -40.770 57 -4.160 529 -26.665 1018 -48.042

3975 -87.150 25 -3.943 477 -29.547 317 -19.858
2001 -70.584 13759 -92.053 89 -7.979 77 -2.767
371 -22.346 1871 -68.567 179 -14.267 437 -30.698

2095 -72.302 2284 -75.235 41 -5.567 193 -12.201
9205 -91.993 1905 -63.313 43 -3.104 169 -14.685
5430 -90.453 51 -4.524 177 -12.272 289 -15.807
6173 -91.106 3782 -86.037 147 -10.684 217 -13.804

R
ob

us
t

1522 -60.778 4012 -87.852 1 -0.069 1 -0.069
6269 -91.143 6046 -91.039 127 -10.777 121 -5.517
9920 -91.997 3 -0.002 249 -16.148 53 -2.235
4076 -87.511 3557 -85.066 529 -32.279 171 -11.329
6799 -91.413 1327 -56.449 293 -14.847 313 -23.933
227 -14.657 4944 -89.982 401 -26.174 93 -7.221
253 -19.639 6475 -91.198 979 -48.060 23 -1.590
67 -3.474 6047 -90.945 867 -46.752 223 -15.112

421 -21.707 6187 -91.106 205 -10.441 859 -44.236
721 -38.410 5291 -90.178 393 -25.808 943 -47.667
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Table 7.3: Results model 1, sector 1, regression of relative price change

Regression of relative price change
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

M
in

M
ax

0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944

St
an

da
rd

0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 2 7.359 0 7.944 0 7.944
0 7.944 2 7.359 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944

R
ob

us
t

0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
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Table 7.4: Results model 1, sector 1, best strategy target

Best strategy target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

M
in

M
ax

0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944
0 7.944 0 7.944 0 7.944 0 7.944

St
an

da
rd

0 7.944 0 7.944 125 16.242 104 -3.224
1 -0.359 1 10.505 77 -1.848 515 -34.359

11 -3.807 18 9.126 7 1.849 597 -42.444
0 7.944 291 -17.673 52 2.399 200 8.835
4 -1.717 35 14.051 219 9.270 187 -4.387

366 -15.093 1 -1.977 142 16.820 287 -8.434
68 -1.063 19 -5.115 2 8.242 49 -4.608
35 -4.771 119 -8.989 192 -4.590 6 6.254
1 6.353 15 -2.634 264 -14.881 183 -19.547
0 7.944 5 -3.488 48 6.208 51 -7.012

R
ob

us
t

1 1.489 0 7.944 30 5.537 51 -7.560
53 -7.747 0 7.944 2 6.733 40 4.261
0 7.944 0 7.944 21 -8.937 297 -14.154

649 -37.981 0 7.944 26 1.447 105 -12.694
437 -31.837 1 -1.546 3 -2.434 304 -11.942

2 15.074 1 1.278 15 -1.909 97 -12.233
0 7.944 3 31.192 31 -7.166 62 -3.158

35 6.898 1 6.353 0 7.944 38 4.430
5 1.448 291 -18.217 20 6.113 3 -0.426
7 2.174 101 -9.353 21 15.357 0 7.944
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Table 7.5: Results model 1, sector 2, best strategy target

Best strategy target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

St
an

da
rd

0 55.46503 1 5.990694 226 29.72739 3023 -39.9065
0 55.46503 1 5.654752 14 59.46176 20 35.65444
0 55.46503 1 5.654752 475 -16.1299 259 0.070142
0 55.46503 1 0.748808 200 -2.95901 155 24.6324
1 5.654752 0 55.46503 154 9.730234 579 -8.74588
1 5.654752 0 55.46503 68 17.34398 391 -10.1024
0 55.46503 1 5.654752 122 0.505085 667 -4.63053
1 5.654752 0 55.46503 90 44.64219 1 6.122253
1 24.56928 1 2.350335 63 1.004341 21 5.563886
0 55.46503 0 55.46503 116 -4.10092 96 40.88692

R
ob

us
t

1 0.748808 0 55.46503 309 -7.8659 1461 -18.5029
0 55.46503 0 55.46503 276 27.33527 552 14.41385
0 55.46503 2 47.89453 285 -5.91141 58 1.788062
0 55.46503 3 20.04673 443 -10.1863 376 19.06228
1 5.654752 0 55.46503 285 -2.19976 138 33.87669
0 55.46503 0 55.46503 69 6.709905 228 9.409531
0 55.46503 1 38.20864 1140 -18.3361 129 -4.3501
0 55.46503 0 55.46503 401 -11.1927 306 1.103708
0 55.46503 2 49.99408 216 28.40892 80 43.01943
0 55.46503 4 57.70896 1 6.71241 0 55.46503
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Table 7.6: Results model 1, sector 3, best strategy target

Best strategy target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

St
an

da
rd

1 -23.9669 0 -86.1997 2975 -176.218 3855 -176.676
0 -86.1997 1 28.71177 2662 -170.203 5761 -178.961
0 -86.1997 1 -70.3851 2393 -172.781 605 -87.1982
0 -86.1997 0 -86.1997 1811 -150.922 1211 -145.708
0 -86.1997 1 21.85831 3443 -175.884 432 -119.89
0 -86.1997 0 -86.1997 1639 -156.64 940 -131.793
0 -86.1997 1 -31.6115 911 -50.7969 421 -60.2185
0 -86.1997 0 -86.1997 1831 -149.101 355 -52.693
0 -86.1997 0 -86.1997 273 7.515481 1079 -111.448
0 -86.1997 1 -0.13965 1609 -163.678 574 -81.0387

R
ob

us
t

0 -86.1997 0 -86.1997 3012 -175.966 2431 -171.122
0 -86.1997 1 5.88836 3205 -178.676 1389 -149.961
0 -86.1997 0 -86.1997 834 -115.272 6475 -185.133
1 -31.7222 1 -31.6115 4121 -183.96 2293 -158.482
0 -86.1997 7 -69.531 1049 -95.3993 1619 -150.616
0 -86.1997 0 -86.1997 1923 -143.535 2901 -171.727
1 -21.425 3 -37.575 3079 -178.257 1464 -143.483
0 -86.1997 1 -25.9652 2633 -175.906 743 -82.2659
0 -86.1997 1 -3.38606 1969 -156.137 1527 -134.802
0 -86.1997 0 -86.1997 1039 -142.353 1535 -134.882
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Table 7.7: Results model 2, sector 1

Best strategy target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

St
an

da
rd

0 7.943965 0 7.943965 7 4.743626 340 -23.3685
0 7.943965 0 7.943965 113 -11.0325 590 -32.0667
0 7.943965 0 7.943965 105 -2.68914 1066 -56.8299
0 7.943965 1 26.28372 199 -12.6691 644 -33.5905
0 7.943965 0 7.943965 170 -14.1567 674 -35.6117
0 7.943965 0 7.943965 109 -1.2896 462 -34.6351
0 7.943965 0 7.943965 137 -14.9505 896 -41.8617
1 -1.54572 0 7.943965 251 2.803899 724 -23.3688
0 7.943965 0 7.943965 350 -5.59311 780 -37.9355
0 7.943965 1 33.45582 130 6.591804 414 -13.903

R
ob

us
t

0 7.943965 0 7.943965 5 7.547606 799 -48.4551
1 3.65066 0 7.943965 28 -0.54713 543 -28.6695
0 7.943965 1 24.10098 175 -14.1055 378 -26.9185
0 7.943965 0 7.943965 116 18.11212 396 -15.8417
0 7.943965 0 7.943965 57 34.40861 480 -31.4443
0 7.943965 1 28.94304 247 -17.7734 872 -43.317
0 7.943965 104 -13.9573 258 -20.1849 562 -22.2523
0 7.943965 0 7.943965 125 -4.40446 714 -49.0859
0 7.943965 0 7.943965 291 -8.70126 487 -38.1173
0 7.943965 0 7.943965 505 -34.5854 1182 -54.9078
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Table 7.8: Results model 2, sector 2

Best strategy target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

St
an

da
rd

0 55.46503 0 55.46503 1291 -26.8899 3935 -40.8802
0 55.46503 0 55.46503 3079 -38.3648 2781 -33.1635
1 23.40863 0 55.46503 1625 -27.379 5143 -42.4744
0 55.46503 0 55.46503 1791 -32.9294 3885 -40.1615
0 55.46503 0 55.46503 2635 -35.0925 2291 -33.0975
0 55.46503 0 55.46503 1207 -29.0114 4579 -40.9801
0 55.46503 0 55.46503 2303 -34.2571 5475 -42.5435
0 55.46503 0 55.46503 3223 -40.3344 4919 -41.7572
0 55.46503 0 55.46503 2877 -39.1331 5095 -41.8673
0 55.46503 3 3.301289 1973 -30.7888 5977 -42.8508

R
ob

us
t

1 5.990694 0 55.46503 597 -18.2156 1081 -16.5401
0 55.46503 0 55.46503 1725 -30.0449 3603 -39.16
1 7.66645 1 3.302933 1715 -25.7405 3549 -38.8326
0 55.46503 0 55.46503 2846 -37.2918 5155 -42.3613
0 55.46503 2 59.23671 1581 -28.4975 4473 -42.0444
0 55.46503 0 55.46503 3245 -40.1134 2749 -36.0768
0 55.46503 0 55.46503 4799 -42.8776 5831 -43.1126
0 55.46503 0 55.46503 1973 -31.2148 5833 -43.2503
0 55.46503 0 55.46503 3027 -38.4126 5579 -42.7224
0 55.46503 0 55.46503 3091 -38.9434 4755 -41.9417
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Table 7.9: Results model 2, sector 3

Best strategy target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

St
an

da
rd

1 -22.2945 0 -86.1997 3101 -176.917 6183 -184.649
0 -86.1997 0 -86.1997 2891 -156.963 5503 -180.838
0 -86.1997 0 -86.1997 3933 -166.11 4735 -168.507
1 -55.9805 1 -20.8302 4587 -181.36 5937 -178.151
1 -12.1954 0 -86.1997 4793 -179.648 5817 -174.236
2 -19.8685 1 -31.9803 1823 -129.573 7949 -183.864
0 -86.1997 1 34.0604 5531 -183.173 6257 -178.699
0 -86.1997 0 -86.1997 5307 -181.441 6349 -178.043
3 -3.89032 0 -86.1997 4009 -172.007 7835 -184.429
0 -86.1997 0 -86.1997 5479 -183.917 7175 -182.68

R
ob

us
t

0 -86.1997 1 -85.7253 3081 -172.376 4691 -174.994
0 -86.1997 0 -86.1997 3293 -175.741 6053 -180.887
0 -86.1997 0 -86.1997 4471 -178.175 5307 -176.247
0 -86.1997 0 -86.1997 4973 -181.675 6353 -180.306
0 -86.1997 0 -86.1997 3064 -173.409 6693 -182.356
2 -80.8056 0 -86.1997 4955 -181.933 5801 -180.223
0 -86.1997 0 -86.1997 5588 -184.541 8195 -184.623
0 -86.1997 0 -86.1997 4545 -179.149 7411 -184.396
1 -12.327 0 -86.1997 4213 -175.61 6891 -183.542
0 -86.1997 0 -86.1997 4552 -177.229 7553 -183.955
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Table 7.10: Results model 3, sector 1

Best strategy target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

St
an

da
rd

0 7.943965 43 12.84162 1 22.05774 6 -4.08673
1 10.59307 5 3.23844 52 -12.6971 10 6.655583
1 15.43965 0 7.943965 2 7.202061 6 0.053346
0 7.943965 90 -14.1975 15 10.61994 22 -6.12146
0 7.943965 0 7.943965 0 7.943965 2 8.264972
0 7.943965 0 7.943965 4 13.49548 11 -6.69358
4 10.3311 54 24.7059 6 10.10831 27 -15.0731
0 7.943965 57 -5.1436 13 14.20253 8 14.04817

11 1.325433 4 -1.40295 21 32.46483 6 5.25883
0 7.943965 7 -0.91303 10 4.813451 14 7.607154

R
ob

us
t

11 17.33621 0 7.943965 0 7.943965 0 7.943965
0 7.943965 1 10.53439 1 28.7259 0 7.943965
0 7.943965 0 7.943965 0 7.943965 1 -2.10517
2 18.66987 0 7.943965 2 10.14556 0 7.943965
0 7.943965 0 7.943965 4 12.04453 14 -8.30039
0 7.943965 0 7.943965 33 26.15489 17 -6.99546

20 2.694609 0 7.943965 12 5.962739 2 12.97737
1 10.4075 0 7.943965 8 -4.15613 17 3.457938
2 15.38734 0 7.943965 2 4.745512 24 39.02022
3 4.65916 0 7.943965 9 3.327787 5 17.06613

90



7.2. All results

Table 7.11: Results model 3, sector 2

Best strategy target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

St
an

da
rd

0 55.46503 0 55.46503 2 54.83899 1 12.39042
0 55.46503 0 55.46503 0 55.46503 3 52.65932
0 55.46503 0 55.46503 4 52.19609 0 55.46503
0 55.46503 0 55.46503 14 47.94197 16 34.01333
0 55.46503 1 26.14154 3 3.870916 1 17.54383
0 55.46503 0 55.46503 18 41.31945 21 19.73147
1 55.57556 0 55.46503 0 55.46503 10 60.21071
1 6.122253 0 55.46503 27 10.1614 11 25.15281
1 48.74664 0 55.46503 16 30.17637 54 47.28276
1 6.524528 0 55.46503 18 19.95401 38 24.13746

R
ob

us
t

0 55.46503 0 55.46503 1 6.262702 36 1.271962
0 55.46503 0 55.46503 4 39.1737 1 36.85962
1 7.004229 0 55.46503 1 26.81223 9 9.694553
1 8.849288 1 6.353795 0 55.46503 44 38.61729
0 55.46503 1 19.58999 0 55.46503 0 55.46503
0 55.46503 0 55.46503 2 31.43952 3 25.77843
0 55.46503 0 55.46503 3 16.24477 6 44.45318
0 55.46503 0 55.46503 6 45.35184 5 15.40606
4 41.25875 1 12.70553 2 34.97005 6 -5.25301
1 6.262702 0 55.46503 1 5.264698 0 55.46503
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Table 7.12: Results model 3, sector 3

Best strategy target
no % %

no sentiment sentiment no sentiment sentiment
# perf # perf # perf # perf

St
an

da
rd

1 -11.917 0 -86.1997 51 -21.4345 8 -76.8536
1 -12.1662 0 -86.1997 53 -99.7333 44 -95.2181
1 -12.3124 1 63.51479 69 -103.52 32 -52.4732
2 -39.5187 0 -86.1997 62 -26.8025 89 -33.3965
1 -12.3562 1 10.18331 27 -52.5553 13 -83.7154
1 -12.3562 2 -68.6567 55 -110.418 91 -16.0112
1 -12.3124 1 10.58842 131 -93.3676 68 -80.0716
0 -86.1997 0 -86.1997 61 -42.4359 157 -84.3902
1 -12.049 4 -16.8232 107 -32.4058 110 -56.7641
1 -12.0344 0 -86.1997 72 -28.0166 114 -57.8619

R
ob

us
t

1 11.82769 0 -86.1997 0 -86.1997 35 -14.3538
2 -66.0412 0 -86.1997 39 -53.1145 7 -78.3723
1 -12.3416 0 -86.1997 2 -80.7031 158 -57.8333
2 -40.2657 0 -86.1997 32 -57.5857 13 -39.0026
1 -12.2393 0 -86.1997 48 -46.9833 27 -67.4118
4 -87.1662 1 -51.004 22 -71.855 18 -77.1894
2 -38.9598 0 -86.1997 24 -74.0648 31 -97.0772
1 -12.4292 0 -86.1997 11 -47.4045 153 -63.0653
4 -34.392 0 -86.1997 28 -112.174 91 93.07215
1 10.02899 0 -86.1997 35 -17.4236 30 -48.5364
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